

AQA Computer Science A-Level
4.5.5 Information Coding Systems

Advanced Notes

www.pmt.education

Specification:

4.5.5.1 Character form of a decimal digit:

Differentiate between the character code representation of a decimal
digit and its pure binary representation.

4.5.5.2 ASCII and Unicode:

Describe ASCII and Unicode coding systems for coding character data
and explain why Unicode was introduced.

4.5.5.3 Error checking and correction:

Describe and explain the use of:
● parity bits
● majority voting
● checksums
● check digits

www.pmt.education

Character form of a decimal digit

When computers need to represent a character like R, k or $, an information coding
system is used to match characters to character codes.

A character code is a decimal digit used to represent a character. For example, a primitive
information coding system might assign the numbers 1 to 26 to the letters A to Z like so:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In the above example, the numbers 1 to 26 are decimal digits that can be used to
represent their corresponding character from A to Z. If the information coding system were
to be used by a computer, the binary representation of the decimal digits would be used.

Character code
Character

Decimal Binary

13 1101 M

ASCII and Unicode

ASCII (American Standard Code for Information Interchange, pronounced ah-ski) and
Unicode are two widely used information coding systems.

Introduced in 1963, ASCII makes use of 7 bits to represent 128 (= 27) different characters
including A to Z, a to z, 0 to 9 and various symbols.

As the Internet became widely used throughout the world , there was a requirement for an
information coding system that could represent not just the Latin alphabet but also
alphabets like Arabic, Cyrillic, Greek and Hebrew.

Unicode was introduced in 1991 to allow the representation of a wide variety of alphabets
by computers. The standard uses anywhere from 8 to 48 bits (1 to 6 bytes) per character,
allowing it to represent a much wider range of different characters than ASCII.

www.pmt.education

Error checking and correction

When data is transmitted from computer to computer, errors can occur that cause the data
to change during transmission which could have inconvenient or even catastrophic
consequences. In order to reduce the chances of incorrect data being used, a number of
error checking and correction principals have been created.

Parity bits
A parity bit is a single bit added to a transmission that can be used to check for errors in
the transmitted data. Its value is calculated based on the transmitted data itself .

There are two types of parity bit, even parity and odd parity.

In even parity, the value of the parity bit is chosen so as to make the total number of 1s in
the transmitted data even . For example, if the data 01101110 (which contains 5 1s) were
to be transmitted, the parity bit would be set to 1, so that the total number of 1s is even.

Odd parity works in a similar way to even parity, but adds a parity bit so that the total
number of 1s in the transmitted data is odd.

When data is received, a parity check is carried out. If the value of the received parity bit
conforms to the type of parity (odd or even) in use, then the received data is treated as
correct. Otherwise, the computer will request that the sender re-transmits the data.

Data to transmit Data received Parity check

1101 → No error
detected

0000 → 00100 Error
detected

0100 → 11001 Error
detected

1001 → 11110 No error
detected

www.pmt.education

11011

Even parity applied

11011

00000

01001

10010

If the first example, there is no error in transmission. When the parity check is applied, no
error is found and so the transmitted data is treated as correct.

In the second and third examples, an error has resulted in the value of 1 bit being changed
(highlighted in red). After a parity check is applied, the error is detected and the computer
would request that the data is retransmitted.

In the fourth example, an error has resulted in the values of two bits changing . However,
when a parity check is applied, no error is detected as the total number of 1s in the data is
still even.

This highlights the major issue with parity bits. Whether using odd or even parity, if an
even number of bits are changed during transmission, the error is not detected.

Majority voting
When using majority voting, each bit of the data is transmitted multiple times . When the
data is received, the most commonly occurring value is taken to be correct.

Data to send

0110

Each bit is transmitted five times

00000 11111 11111 00000

Data received

01000 01111 11111 01010

Majority vote

0 1 1 0

Data received after majority vote

0110

www.pmt.education

As shown in the example, when an error occurs and the value of a bit is changed (shown
in red), majority voting doesn’t just detect the error but also corrects the error, meaning
there’s no need for retransmission like when using a parity bit.

The example also demonstrates majority voting’s capability to correct errors when the
values of multiple bits have changed, another advantage of majority voting over parity bits.

The primary disadvantage of majority voting is that the volume of data being transmitted is
increased with the repetition of bits. In the example above, the data transmitted is five
times larger than the original data. This would significantly increase the time taken to
transmit data.

Checksums
As with parity bits, checksums involve adding a value, determined by the data itself , to the
transmitted data.

An algorithm is used to determine the value of a checksum based on the data being
transmitted. There is no agreed algorithm for this and different systems will use their own
solutions. A simple algorithm that could be applied is the modulo function, which returns
the remainder after a division.

Data to send

4610 = 1011102

Calculate value of checksum

4610 MOD 810 = 610 = 1102

Data transmitted

1011101102

In the example above, the value of the checksum is calculated using the function MOD 8
which returns the remainder when the value to send is divided by 8. This value is then
appended to the original data in binary before being transmitted.

www.pmt.education

Once received, the recipient can remove the checksum and apply the same algorithm as
was used when sending the data to ensure that the checksum matches the transmitted
data. If the two do not match, the recipient cannot correct the error itself so must request
that the sender re-transmits the data.

Check digits
A check digit is a type of checksum in which only a single digit is added to the transmitted
data. This reduces the number of different algorithms that could be used to calculate the
value of the check digit and so reduces the variety of errors that the method can detect.

 Can detect errors
in transmission

Can correct errors
in transmission

Efficiency

Parity bit Yes
- but only if an odd
number of bits are

changed

No

Very efficient

Majority vote
Yes

Yes
- as long as the majority

of bits remain
unchanged

Inefficient
- each bit is sent

multiple times

Checksum
Yes

No

Mostly efficient
- a complex algorithm

could make the process
less efficient

Check digit
Yes

No

Efficient
- the algorithms used to
calculate the check digit
are limited in complexity

www.pmt.education

