
 
 
 
 

 
AQA Computer Science A-Level 

4.5.4 Binary number system 
Advanced Notes 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

www.pmt.education



Specification: 
 
4.5.4.1 Unsigned binary: 

Know the difference between unsigned binary and signed binary 
Know that in unsigned binary the minimum and maximum values for a 

given number of bits, n, are 0 and 2n -1 respectively 
 

4.5.4.2 Unsigned binary arithmetic: 
Be able to: 

● add two unsigned binary integers 
● multiply two unsigned binary integers 

 
4.5.4.3 Signed binary using two’s complement: 

Know that signed binary can be used to represent negative integers and 
that one possible coding scheme is two’s complement. 

Know how to: 
● represent negative and positive integers in two’s complement 
● perform subtraction using two’s complement 
● calculate the range of a given number of bits, n. 

 
4.5.4.4 Numbers with a fractional part: 

Know how numbers with a fractional part can be represented in: 
● fixed point form in binary in a given number of bits 
● floating point form in binary in a given number of bits 

Be able to convert for each representation from: 
● decimal to binary of a given number of bits 
● binary to decimal of a given number of bits 

 
4.5.4.5 Rounding errors: 

Know and be able to explain why both fixed point and floating point 
representation of decimal numbers may be inaccurate. 
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4.5.4.6 Absolute and relative errors: 
Be able to calculate the absolute error of numerical data stored and 

processed in computer systems. 
Be able to calculate the relative error of numerical data stored and 

processed in computer systems. 
Compare absolute and relative errors for large and small magnitude 

numbers, and numbers close to one. 
 

4.5.4.7 Range and precision: 
Compare the advantages and disadvantages of fixed point and floating 

point forms in terms of range, precision and speed of calculation. 
 

4.5.4.8 Normalisation of floating point form: 
Know why floating point numbers are normalised and be able to 

normalise un-normalised floating point numbers with positive or negative 
mantissas. 

 
4.5.4.9 Underflow and overflow: 

Explain underflow and overflow and describe the circumstances in 
which they occur. 
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Signed and unsigned binary 
 

1011 
 
The string of 0s and 1s above is a binary number . It could be either signed or unsigned, 
and there’s no way to work that out. A computer has to be told whether a number is signed 
or unsigned. 
 
Unsigned binary numbers can only represent positive numbers. Signed binary allows for 
the representation of negative numbers  using binary. 
 
If the number above were unsigned, it could be converted to 
decimal by assigning place values to each of the digits and 
adding up the total of the values under which a 1 falls, 
resulting in the decimal value 11. 
 
Range of unsigned numbers 
The range of numbers that can be represented by an unsigned binary number depends on 
the number of bits available. With one bit, the decimal numbers 0 and 1 can be 
represented. With two bits, the decimal numbers 0, 1, 2 and 3 can be represented. 
 
There is a pattern to the range of numbers that can be represented by a given number of 
bits. For n bits, there are 2n possible permutations of the bits, giving a range of decimal 
numbers from 0 to 2n-1. 
 
For example, with eight bits, the decimal numbers 0 to 255 (= 28-1) can be represented. 
 

Unsigned binary arithmetic 
 
Adding two unsigned binary integers 
When adding unsigned binary numbers, there are four important rules  to remember: 
 

1.  0 + 0 + 0 =  0 
2.  0 + 0 + 1 =  1 
3.  0 + 1 + 1 = 10 
4.  1 + 1 + 1 = 11 

 
Make sure you understand these rules and adding binary numbers will be easy. 
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Example: Add the unsigned binary integers 1011 and 1110. 

 

  1  0  1  1 

+  1  1  1  0 

 

  1  0  1  1 

+  1  1  1  0 

        1 

 

  1  0  1  1 

+  1  1  1  0 

      1  0  1 

 

  1  0  1  1 

+  1  1  1  0 

    1  01  0  1 

 

  1  0  1  1 

+  1  1  1  0 

1  11  01  0  1 

 
 

1  1  0  0  1 

 

 
Place the two binary numbers above each other so that the 
digits line up. 
 
 
Starting from the least significant bits (the right hand side), 
add the values in each column  and place the total below. 
For the first column (highlighted), rule 2 from above 
applies. 
 
 
Move on to the next column. This time rule 3 applies. In the 
case that the result of addition for a single column is more 
than one digit, place the first digit of the result in small 
writing under the next most significant  bit’s column. 
 
 
On to the next column, where there is a 0, a 1 and a small 
1. In this case, rule 3 applies again. Therefore the result is 
10. Because 10 is two digits long , the 1 is written in small 
writing under the next most significant bit’s column. 
 
Moving on to the most significant column where there are 
three 1s. Rule 4 applies, so the result for this column is 11. 
The first digit of the result is written under the next most 
significant bit’s column, but it can be written full size as 
there are no more columns to add. 
 
Finally, the result is read off from the full size numbers  at 
the bottom of each column. In this case, 1011 + 1110 = 
11001. 

After carrying out binary addition, it’s a good idea to check your answer by converting to 
decimal if you have time. In this example, 10112 (1110) + 11102 (1410) = 110012 (2510) so 
we haven’t made any mistakes. 
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Multiplying two unsigned binary integers 
When multiplying unsigned binary numbers, write out one of the two numbers starting 
under each occurrence of a 1  in the second number and then add the contents of the 
columns. 
 
Example: Multiply the binary numbers 1011 and 1010. 

 

Guide: 1  0  1  1 

             

      1  0  1  0 

    1  0  1  0  0 

1  0  1  0  0  0  0 

 

        1  0  1  0 

      1  0  1  0  0 

+  1  0  1  0  0  0  0 

  1  11  0  1  1  1  0 

 
 

  1  1  0  1  1  1  0 

 

 
Choose one of the two numbers as your 
guide and write it out in columns. 
 
Write out the second number under each 
occurrence of a 1 in the guide number, 
aligning the least significant bit of the 
second number with the position of the 1 in 
the guide number. 
 
 
Now perform binary addition  on the 
columns, excluding the guide , using the 
technique explained earlier. 
 
 
 
 
 
 
The result of the addition can now be read 
off from the full size numbers at the bottom 
of each column. In this case, 
1011 × 1010 = 1101110 

 
As with binary addition, binary multiplication can be checked by converting to decimal. In 
this example, 1011 2 (1110) × 10102 (1010) = 1101110 2 (11010) so the multiplication has 
worked correctly. 
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Signed binary with two’s complement 
 
There are a few different coding schemes that can be used for signed binary. AQA uses 
one called two’s complement to allow for the representation of both positive and negative 
numbers in binary. 
 
When using two’s complement, the most significant bit of a number is given a negative 
place value. For example, with four bits, the place values would be: 
 

-8  4  2  1 
 
This allows negative numbers  to represented like so: 
 

-8  4  2  1 

1 0 1 1 
 

-8 + 2 + 1 = -5 
 
Subtraction using two’s complement 
Computers work by adding numbers . In order to perform subtraction, computers in fact 
add negative numbers. For example, if a computer had to work out the value of 14 - 6, it 
would actually work out 14 + (-6). 
 
Example: Subtract 12 from 8. 

 
 

  -16  8  4  2  1 

  0  1  0  0  0 

+  1  0  1  0  0 

  1  1  1  0  0 

 

In five bit two’s complement, 810 is 010002 and 
-1210 is 101002. Five is the minimum  number of bits 
required in order to represent -12. 
 
The two’s complement numbers are then added 
using the same technique for adding that is 
explained above before the result can be read off 
as 111002. 
  
Checking the result, -16 + 8 + 4 = -4 so the 
calculation is correct. 
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Range of two’s complement numbers 
Given a certain number of bits , the range of a two’s 
complement signed binary number includes both positive 
and negative values. 
 
For example, with four bits, the largest positive value that 
can be represented is 7 and the most negative number  that 
can be represented is -8 as shown on the right hand side of 
the page. 
 
More generally, with n  bits, the range of a two’s complement 
signed binary number is from 2n-1-1 to -2n-1. 

 

-8  4  2  1 

0 1 1 1 
 

4 + 2 + 1 = 7 

 
 

-8  4  2  1 

1 0 0 0 
 

= -8 

 

Numbers with a fractional part 
 
Binary can be used to represent numbers with a fractional part . There are two ways of 
doing this, one uses fixed point form and the other uses floating point form. 
 
Fixed point binary 
When using fixed point with a given number of bits, a specified number of bits are placed 
before a binary point and the remaining bits fall behind the binary point. 
 
Standard binary place values are used for columns before the binary point, and the 
columns behind the binary point start at ½, then ¼ and ⅛ etc.  
 
For example, with 8 bits split evenly with four bits before and after the binary point, the 
number 11.312510 can be represented in binary as 10110101. 
 

8  4  2  1  •  2
1   4

1   8
1   1

16  

1 0 1 1    0 1 0 1 
 

 2 1   11.3125 8 +  +  +  4
1 + 1

16 =   
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Floating point binary (binary to decimal) 
Floating point binary is comparable to scientific notation in that a number is represented as 
a mantissa and an exponent. In scientific notation, the number 3,100,000 could be written 
as 3.1×106 where 3.1 is the mantissa and 6 is the exponent. 
 
In exam questions  on floating point numbers, both the mantissa and exponent will be 
represented using two's complement signed binary. 
 
In floating point binary, a number of bits are allocated to the mantissa the remaining bits 
form the exponent. For example, with 5 bits for the mantissa and three for the exponent: 
 

0 1 1 0 1  0 1 1 
Mantissa  Exp. 

In order to convert from floating point form to decimal, first convert the exponent to 
decimal . In this example, 0112 = 310. 
 

 
Next, treating the number as if there were a binary point between the first and second 
digits of the mantissa , move the binary point the number of positions specified by the 
exponent. In this case, the binary point moves three positions. 
 
Now treat the mantissa as a  fixed point binary number, with the binary point fixed in the 
position specified by the exponent. 
 

− 8  4  2  1  •  2
1  

0 1 1 0    1 
 2 6.5 4 +  +  2

1 =   

 
As shown above, the result of converting the floating point binary number 01101011 to 
decimal (with a five bit mantissa and three bit exponent) is 6.5. 
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Floating point binary (decimal to binary) 
In order to convert a decimal number to a floating point binary number, you must first 
convert your decimal number to fixed point binary . 
 
Example: Convert the decimal number 14.625 to floating point binary. 
 
14.625 is smaller than 16, so we need columns before the binary point for -16, 8, 4 and 2. 
0.625 = ½ + ⅛ so we need columns after the binary point for ½, ¼ and ⅛. 
 

6− 1 8  4  2  1  •  2
1   4

1   8
1  

0 1 1 1 0    1 0 1 
 
Now that we have a fixed point representation of our decimal 
number, we have to normalise the number. In order to be 
normalised, a floating point number must start with 01 (for a 
positive number) or 10 (for a negative number). As explained 
above, when converting from floating point to decimal, the 
binary point is assumed to be between the first two digits in 
the mantissa. In this case, we must add a leading 0 and 
move the binary point four positions to the left. 
 

 
 
Our exponent must therefore be four, and positive because we moved the decimal point to 
the left. If the point had moved to the right, our exponent would be negative. Converting 
this exponent into binary gives us 0100. 
 
We now have our mantissa as 01110101 and our exponent as 0100. Therefore 14.625 10 
= 0111010101002 in floating point notation with an eight bit mantissa and a four bit 
exponent. 
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Rounding errors 
 
There are some decimal numbers that cannot possibly be represented exactly in binary, 
even with the use of fixed point or floating point notation. A bit like ⅓, which can only be 
represented in decimal as 0.3333…, there are some numbers which binary can only 
approximately represent. 
 
There are many numbers that binary cannot accurately represent, one of which is 0.110 
which is 0.00011001100110011… in binary. For this reason, both fixed point and 
floating point representations of decimal numbers may be inaccurate. 
 

Absolute and relative errors 
 
You can calculate absolute and relative errors in order to see how close a particular 
number is to an actual value. 
 
Absolute error calculation 
An absolute error is the actual amount by which a value is inaccurate and can be 
calculated by finding the difference between the given value and the actual value. 
 
Example: The number 14.610 is represented in fixed point binary as 1110.12. Calculate 
the absolute error. 
 
The binary 1110.1 is equal to 14.510, so the absolute error can be calculated like so: 
 

14.610 - 14.510 = 0.110. 
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Relative error calculation 
A relative error  is a measure of uncertainty in a given value compared to the actual value 
which is relative to the size of the given value. A relative error can be calculated using the 
formula: 

 
elative error r =  actual value

absolute error  
 

This formula gives a relative error as a decimal, but can give a percentage if the result is 
multiplied by 100. 
 
Example: The number 12.4 is represented in fixed point binary as 1100.0112. Calculate 
the relative error as a percentage to four significant figures. 
 
The binary 1100.011 is equal to 12.375 10. The absolute error is therefore 0.025. Using 
the formula, we can calculate the relative error. 
 

elative error % 00 .2016 to 4 s.f .r =  12.4
0.025 × 1 = 0  

 
Errors in relation to magnitude 
An absolute error of 0.1cm in a measurement of 50m results in a very small relative error 
of 0.002% but the same absolute error of 0.1cm in a measurement of 1cm results in a 
much larger relative error  of 10%. 
 

Fixed point vs floating point 
 
Although both fixed point and floating point perform the same function of representing 
numbers with fractional parts in binary, they each have their own relative advantages and 
disadvantages . 
 
Floating point allows for the representation of a greater range of numbers  with a given 
number of bits than fixed point. This is because floating point can take advantage of an 
exponent which can be either positive or negative. The number of bits allocated to each 
part of a floating point number affects the numbers that can be represented. A  large 
exponent  and a small mantissa allows for a  large range  but little precision. In contrast, a 
small exponent and a large mantissa allows for good precision  but only a small range . 
 
In a similar way, the placement of the binary point in fixed point notation determines the 
range and precision of the numbers that can be represented. A binary point close to the 
left of a number gives good precision but only a small range of numbers. However, move 
the binary point to the right and the range is increased while decreasing precision . 
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Normalisation 
 
Floating point numbers are normalised in order to provide the maximum level of precision 
for a given number of bits. Normalisation involves ensuring that the a floating point 
numbers starts with 01 (for a positive number) or 10 (for negative numbers). 
 
Example: Normalise the binary number 000110100101 which is a floating point number 
with an eight bit mantissa and a four bit exponent . 
 
First, split the number into mantissa and exponent. 
 

0 0 0 1 1 0 1 0  0 1 0 1 
Mantissa  Exponent 

Next, adjust the mantissa  so that it starts 01 or 10. In this case, because we’re dealing 
with a positive number, we will move all of the bits two places to the left and add zeros to 
the end of the mantissa. Our new mantissa is 01101000. 
 
Because we’ve made the mantissa bigger by shifting the bits two positions to the left, we 
must reduce the exponent by two so as to ensure the same number is still represented . 
The current exponent is 510 so, subtracting two , the new exponent must be 310 which is 
00112 in binary. 
 

0 1 1 0 1 0 0 0  0 0 1 1 
Mantissa  Exponent 

We now have a mantissa that starts with the digits 01. A positive normalised number. 
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Underflow and overflow 
 
Underflow and overflow are two types of error that can occur when working with binary. 
 
Underflow  
Underflow occurs when very small numbers are to be 
represented but there are not enough bits available . For 
example, the number 0.01562510 can be represented in 
fixed point binary as 00000012 with one bit before the binary 
point and six bits after the binary point. However, if only 5 bits 
are available after the binary point, the number would be 
represented as 0000002 which is 010. 
 
Overflow 
Overflow occurs when a number is  too large to be represented with the available bits. 
Overflow is particularly important when using signed binary. 
 
Example: Using 8 bit two’s complement signed binary, perform the operation 127 + 1. 
 
First, convert each number to two’s complement binary. 12710 is 011111112 and 110 is 
000000012. Next, perform binary addition. 
 

  -128  64  32  16  8  4  2  1 

  0  1  1  1  1  1  1  1 

+  0  0  0  0  0  0  0  1 

  11  01  01  01  01  01  01  0 

 
As the working above shows, the result of 01111111 + 00000001 in two’s complement 
signed binary is 10000000. Converting these numbers to decimal, we have that 127 + 1 
= -128 which obviously isn’t right. Overflow has occurred. 
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