

AQA Computer Science AS Level
4.4.1 Abstraction and automation

Intermediate Notes

www.pmt.education

Specification:

4.4.1.1 Problem-solving:

Be able to develop solutions to simple logic problems.
Be able to check solutions to simple logic problems

4.4.1.2 Following and writing algorithms:

Understand the term algorithm.
Be able to express the solution to a simple problem as an algorithm

using pseudocode, with the standard constructs:
● sequence
● assignment
● selection
● iteration

Be able to hand-trace algorithms.
Be able to convert an algorithm from pseudocode into high level

language program code.
Be able to articulate how a program works, arguing for its correctness

and its efficiency using logical reasoning, test data and user feedback.

4.4.1.3 Abstraction:
Be familiar with the concept of abstraction as used in computations and

know that:
● representational abstraction is a representation arrived at by

removing unnecessary details
● abstraction by generalisation or categorisation is a grouping by

common characteristics to arrive at a hierarchical relationship of
the 'is a kind of' type

4.4.1.4 Information hiding:

Be familiar with the process of hiding all details of an object that do not
contribute to its essential characteristics.

www.pmt.education

4.4.1.5 Procedural abstraction:
Know that procedural abstraction represents a computational method.

4.4.1.6 Functional abstraction :
Know that for functional abstraction the particular computation method

is hidden.

4.4.1.7 Data abstraction:
Know that details of how data are actually represented are hidden,

allowing new kinds of data objects to be constructed from previously defined
types of data objects.

4.4.1.8 Problem abstraction/reduction:

Know that details are removed until the problem is represented in a way
that is possible to solve, because the problem reduces to one that has
already been solved.

4.4.1.9 Decomposition:

Know that procedural decomposition means breaking a problem into a
number of sub-problems, so that each sub-problem accomplishes an
identifiable task, which might itself be further subdivided.

4.4.1.10 Composition:

Know how to build a composition abstraction by combining procedures
to form compound procedures.

Know how to build data abstractions by combining data objects to form
compound data, for example tree data structure.

4.4.1.11 Automation:

Understand that automation requires putting models (abstraction of real
world objects/ phenomena) into action to solve problems. This is achieved by:

● creating algorithms
● implementing the algorithms in program code (instructions)
● implementing the models in data structures
● executing the code

www.pmt.education

Problem Solving

Problem solving is the process of ​finding a solution ​to a difficult or complex issue.

In an exam, you might be given a ​series of statements​ from which you have to find the
answer to a question.

Example:​ Given the two statements

George is a student

and
All students like chocolate

which of the following conclusions could be drawn?

George lives in
Finland

✘ We can’t tell anything about where George lives
from the statements, so this conclusion can’t be
made. This doesn’t mean that George doesn’t live
in Finland, we just don’t know for sure.

All chocolate is eaten
by students

✘ This could be true, because we’re not told that
anyone other than students eat chocolate, but we
can’t say for sure.

George likes
chocolate ✔ This must be true. We’re told that George is a

student and that all students (including George)
like chocolate.

Exam questions often contain ​more than two ​statements, but the process of forming a
reasonable conclusion is the same.

www.pmt.education

Algorithms

An algorithm is a ​sequence of steps​ that can be followed to complete a task. Algorithms
always terminate rather than going on forever in a loop.

Algorithms can be written in ​pseudocode ​: a way of describing instructions that is
independent of any particular programming language.

Assignment in pseudocode
Assignment is the process of ​giving a value to a variable or constant ​. In pseudocode,
assignment is represented using an arrow pointing towards the variable or constant that is
being given a value.

 counter ← 27
 name ← “Sarah”

The pseudocode above assigns the value 27 to the variable ​counter​ and the value Sarah
to the variable ​name​.

Sequence in pseudocode
Sequence is the name given to instructions that ​follow on from one another​.

 counter ← 18
 counter ← counter + 1
 remainingIterations ← 20 - counter

In the pseudocode above, the variable ​counter​ is ​set ​to 18 and then ​incremented ​by one.
Following that, the variable ​remainingIterations​ is ​set ​to twenty minus the value of
counter​. The operations will be executed​ in the order that they appear ​.

Selection in pseudocode
Selection is the process of ​ choosing an action to take based on the result of a comparison
of values.

IF name = “Brian” THEN
OUTPUT “Hello Brian”

END IF

The pseudocode above compares the value of the variable ​name​ to the value “Brian” and
outputs “Hello Brian” ​depending on the result​ of the comparison.

In pseudocode, the statements ​IF​, ​ELSE IF​, ​ELSE​ and ​END IF​ can all be used.

www.pmt.education

Iteration in pseudocode
Iteration is the process of ​repeating an operation​. Iteration structures include ​FOR​ and
WHILE​ loops.

FOR number ← 6 to 12
OUTPUT number / 2

END FOR

WHILE number < 18

Number ← number + (number / 4)
END WHILE

The code within an iteration structure is ​indented ​, allowing for
easy identification ​ of different loops.

Abstraction

Abstraction is the name given to the process of ​omitting unnecessary details ​ from a
problem.

When solving a problem, abstraction can be used to ​simplify the problem ​which can in turn
make finding a solution ​easier​.

There are two distinct forms of abstraction: ​representational abstraction ​and ​abstraction by
generalisation / categorisation​.

Representational abstraction

A representation of a problem arrived at by
removing unnecessary details​ from the
problem.

Abstraction by generalisation /
categorisation

A grouping by ​common characteristics ​ to
arrive at a​ hierarchical relationship ​of the
“is a kind of”​ type.

The definitions of these two forms of abstraction are ​often asked for ​in exams, so it’s worth
learning them.

www.pmt.education

Information hiding
Information hiding is defined as the process of ​hiding all details of an object that do not
contribute to its essential characteristics ​. For example, if you’re designing a program that
works out how many cars can fit onto a ferry, information about the manufacturer or the
colour of a car can be disregarded and just information about the size and weight of cars
retained.

Procedural abstraction
Procedural abstraction involves ​breaking down a complex model ​into a ​series of reusable
procedures ​. The actual values used in a computation are abstracted away and a
computational method is achieved.

For example: To calculate the area of a rectangle, this procedure could be used:

CalculateArea = width * height

Functional abstraction
Procedural abstraction results in a procedure. Abstracting further ​ disregards the particular
method​ of a procedure and ​results in just a function ​.

For example: Abstracting the procedure from the previous example leaves us with a
function: ​RectangleArea = CalculateArea()
Data abstraction
In data abstraction, ​specific details ​ of how data is ​actually
represented ​ are abstracted away, allowing new kinds of data
structures to be created from previously defined data
structures. Data abstraction forms the basis of​ abstract data
types​.

Problem abstraction / reduction
In problem abstraction (which is sometimes called ​reduction​),
details are removed ​ from a problem ​until it is represented in a
way that is solvable ​. This works because a simplified
problem is often similar to a problem that has ​already been solved ​, meaning that a solution
for the problem can be found.

Decomposition
When using decomposition, a problem is ​divided into a series of smaller problems ​. These
smaller problems can be ​ solved individually ​until all parts of the original problem have
been solved.

www.pmt.education

Composition
When dealing with a complex problem, composition can be used to ​combine procedures ​ to
form a larger system. Composition is used in ​abstract data types​, where a complex
abstract data type is formed for smaller and simpler data types.

Automation
Automation is defined as the process of ​putting abstractions of real world phenomena ​ ​into
action​ to solve problems.

www.pmt.education

