

AQA Computer Science A-Level 4.3.1 Graph-traversal Advanced Notes

Specification:

4.3.1.1 Simple graph-traversal algorithms

Be able to trace breadth-first and depth-first search algorithms and describe typical applications of both. Breadth-first: shortest path for an unweighted graph. Depth-first: Navigating a maze.

Graph-Traversal

Graph-traversal is the process of visiting each vertex in a graph. There are two algorithms in this section - depth-first and breadth-first graph-traversals. In a depth-first search, a branch is fully explored before backtracking, whereas in a breadth-first search a node is fully explored before venturing on to the next node.

Depth-First Traversal

Breadth-First Traversal

Synoptic Link

Graphs can be used as visual representations of complex relationships.

Graphs are covered in Graphs under Fundamentals of Data Structures.

Fully Explored

For the context of this resource, s node is discovered when it has been included in the result and a node is completely/fully explored when all of its adjacent nodes have been discovered.

Synoptic Link

Stacks are abstract data types which use a LIFO (last in, first out) order of execution.

Stacks are covered in Stacks under Fundamentals of Data Structures.

Depth-First Search

Depth-first traversal uses a stack. Depth-first traversal is used for navigating a maze. The following example uses a tree, but a depth-first algorithm can be performed on any connected graph.

Example 1:

Here is a graph. This is a binary-tree.

Note

Whilst the depth-first algorithm can be used on a tree, it is not an example of tree-traversal as a depth-first traversal can be performed on any connected graph and tree-traversals are unique to trees.

Synoptic Link

A tree is a connected acyclic graph. A binary tree is a rooted tree where each node has at most two children. The root node has no parent.

Trees are covered in **Trees** under **Fundamentals of Data Structures**.

A graph traversal can start from any node, but for simplicity, the root node F will be chosen.

As F is a new node, it will be added to the result and to the stack. To show F has been discovered, it has been shaded blue.

Note

Node and vertex can be used interchangeably, as can edge and arc.

Result: F

Adjacent

When two **nodes** are **connected** to one another by a single **edge**, they can be said to be **adjacent**.

Next, the nodes adjacent to F are observed. These are B and G. B is higher alphabetically so B is discovered first.

Result: FB

Note

A binary tree may be made in the reverse order, in which case the higher item would be traversed first. The undiscovered vertices adjacent to B are A and D; A is less than D so A is discovered first.

www.pmt.education

Result: FBA

There are no undiscovered nodes adjacent to A. Therefore, A can be popped off the stack and labelled completely explored, visually indicated by the purple colour.

Result: FBA

B F

The next item in the stack is looked at - B.

Result: FBA

B has an adjacent undiscovered node, so D is visited.

Result: FBAD

D has two adjacent undiscovered nodes, C and E. C is less than E so it is discovered first.

C has no adjacent undiscovered nodes (it is completely explored) so it is popped off the stack, and the next item in the stack, D, is revisited.

Result: FBADC

D is adjacent to just one undiscovered node, E.

E has no undiscovered adjacent node so it is completely explored and can be removed from the stack. The next item on the stack, D, is revisited.

D is completely explored. It is popped off the stack and B is revisited.

Result: FBADCE

B is completely explored. B is popped off the stack and F is revisited.

Result: FBADCE

F has an adjacent undiscovered node. G is discovered, added to the stack and printed in the result.

Result: FBADCEG

H is the only undiscovered node adjacent to G.

From a human's perspective, the procedure is complete as all nodes have been visited. However, a computer cannot know this until the algorithm has reached completion. H has no adjacent undiscovered nodes so it is completely explored.

Result: FBADCEGH

G is completely explored so it is popped from the stack.

Result: FBADCEGH

Finally, F is completely explored.

Result: FBADCEGH

There are no more items on the stack so the algorithm is complete.

Example 2:

Here is another graph. In this example, the graph is **not** a binary tree.

Any node can be chosen to traverse from. In this example, the start node will be A.

Result: A

The smallest node adjacent to A is B.

Result: A B

The smallest undiscovered node adjacent to B is C.

Result: A B C

The smallest undiscovered node adjacent to C is F.

Result: A B C F

The smallest undiscovered node adjacent to F is E.

Result: ABCFE

E has no undiscovered neighbours so it is completely explored. It is popped off the stack and the next item on the stack is revisited.

Result: ABCFE

F has one undiscovered neighbour, H.

Result: ABCFEH

G is H's only undiscovered neighbour.

Result: ABCFEHG

G has no adjacent nodes which have yet to be discovered. G is completely explored. G is popped off the stack, and the next item on the stack is revisited.

Result: ABCFEHG

H is completely explored.

Result: ABCFEHG

F is completely explored.

Result: ABCFEHG

C is completely explored.

Result: ABCFEHG

B has an undiscovered adjacent node. D is added to the stack, becomes discovered and is added to the result.

Result: ABCFEHGD

D has no undiscovered neighbours so it is popped from the stack, and the next item (B) is revisited.

Result: ABCFEHGD

B is completely explored.

____A

Result: ABCFEHGD

A is completely explored.

Result: ABCFEHGD

The stack is empty, so the algorithm terminates and the result is printed.

Algorithm

An algorithm is a set of instructions which completes a task in a finite time and always terminates.

Breadth-First Search

Synoptic Link

Queues are an abstract data type with a FIFO (first in, first out) order of execution.

Queues are covered in Queues under Fundamentals of Data Structures. Breadth-first traversal uses a queue. This algorithm will work on any connected graph. Breadth-first traversal is useful for determining the shortest path on an unweighted graph.

Example 1:

Here is a graph.

This is an example of a binary tree, but a breadth-first traversal will work on any connected graph. Any node can be chosen as a starting position, but as this is a binary tree it makes logical sense to start from the root F. F is discovered.

Connected Graph

In a connected graph there is a path between each pair of nodes; there are no unreachable nodes.

Head

Result: F

The undiscovered nodes adjacent to F are added to the queue and the result in alphabetical order.

Because all of it's adjacent nodes are discovered, F can be said to be completely explored (represented by the purple colouring)

Now that F is completely explored, we can move on to the next node. To do this, we look at the first position of the queue. B is removed from the top of the queue, so this is the next node to be inspected. The undiscovered nodes adjacent to B are added to the queue and results - A and D have been discovered.

B is now completely discovered.

Result: FBGAD

G Head A D

The next item in the queue is removed and inspected.

Result: FBGAD

G has one adjacent undiscovered node. H is added to the result and to the queue.

Result: FBGADH

A Head
D H

G is now completely explored.

Result: FBGADH

A Head
D H

A is next in the list. It is removed and inspected.

Result: FBGADH

D Head

There are no undiscovered vertices adjacent to A, so it is completely explored.

Result: FBGADH

D is the next item in the queue.

Result: FBGADH

Head

D has two adjacent undiscovered nodes which are put into the queue and the result in alphabetical order.

Result: FBGADHCE

H Head

D is completely explored.

Result: FBGADHCE

H Head

The next item in the queue is H.

H has no adjacent undiscovered nodes so it is completely explored.

Result: FBGADHCE

C Head

C is inspected next.

Result: FBGADHCE

C is completely explored.

Result: FBGADHCE

E Head

Finally, E is at the top of the queue.

Result: FBGADHCE

Head

E is completely explored.

Head

Result: FBGADHCE

There are no more items in the queue, so the algorithm terminates and the result is printed.

Example 2:

Here is another graph. In this example, the graph is **not** a binary tree.

Any node can be chosen for graph-traversal. For this example, we will start with A.

All nodes adjacent to A are placed in the queue as they are discovered in alphabetical order and are added to the result.

A has been completely explored.

Head В D Ε

Result: A B D E

The next node is taken from the queue.

The undiscovered node adjacent to B is added to the queue and the result.

Result: ABDEC

D Ε

Head

B is now completely explored.

Result: ABDEC

D is next to be explored.

D Ε

Head

D has no adjacent undiscovered nodes so it is completely explored.

The head of the queue is E.

E has one adjacent undiscovered vertex - F.

E has been completely explored.

C is next to be explored.

The only node adjacent to C is added to the queue and result.

Result: ABDECFH

F Head

C is completely explored.

Result: ABDECFH

F Head

F is next in the queue.

F has no adjacent undiscovered nodes so F is completely explored.

H is the next item in the queue.

H's only undiscovered neighbour is added to the queue and the result.

H is now completely explored.

Finally, G is removed from the queue and explored.

G has no adjacent undiscovered nodes. It is completely explored.

Head

Result: ABDECFHG

The queue is empty, so the algorithm terminates.