
 
 
 
 

AQA Computer Science A-Level 
4.1.2 Programming paradigms 

Concise Notes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

www.pmt.education



Specification: 
 
4.1.2.1 Programming paradigms: 

Understand the characteristics of the procedural and object-oriented 
programming paradigms, and have experience of programming in each. 

 
4.1.2.2 Procedural-oriented programming: 

Understand the structured approach to program design and 
construction. 

Be able to construct and use hierarchy charts when designing 
programs. 

Be able to explain the advantages of the structured approach. 
 
4.1.2.3 Object-oriented programming: 

Be familiar with the concepts of: 
● class 
● object 
● instantiation 
● encapsulation 
● inheritance 
● aggregation 
● composition 
● polymorphism 
● overriding 

Know why the object-oriented paradigm is used. 
Be aware of the following object-oriented design principles: 

● encapsulate what varies 
● favour composition over inheritance 
● program to interfaces, not implementation 

Be able to write object-oriented programs 
Be able to draw and interpret class diagrams 

 
 
 
 

www.pmt.education



The procedural programming paradigm 
 

● Procedural programs are formed from ​sequences of instructions 
● Instructions are executed ​in the order in which they appear 
● Procedures form parts of the program and can be ​called from anywhere​ within the 

program, by other procedures or ​recursively 
● Data is stored in procedural programs by​ constants and variables 
● A data structure is said to have a ​global scope ​if it can be accessed from all parts of 

the program 
● A data structure is said to have a ​local scope ​if it is only accessible from the 

structure within which it is declared 
 
The structured approach to program design and construction 

● Keeps programs ​ easy to understand and manage 
● Four basic structures are used: 

○ Assignment 
○ Sequence 
○ Selection 
○ Iteration 

● Structured programs are said to be ​designed from the top down 
● The most important elements of a problem are ​broken down into smaller tasks​, 

each of which can be solved in a block of code such as a procedure or module 
which goes on to form part of the overall solution 

● Makes ​maintaining the program ​easier as navigation of different elements of the 
overall solution is improved 

● Testing can be ​carried out on the individual modules ​before they are combined to 
form the overall solution 

● Development can be split over a team ​of developers each of which is assigned a 
different module to work on 

 
Hierarchy charts 

● Graphically represent​ the structure of a structured 
program 

● Each procedure is​ displayed as a rectangle​ which 
is connected to any other procedures that are used 
within it 

● Lines between the rectangles show the 
relationships ​that exist between the different parts 
of the program 

 
 

 

www.pmt.education



The object-oriented programming paradigm 
 
Objects 

● Containers of both data and instructions 
● Created from classes​ in a process called ​instantiation 
● Defined as an​ instance of a class 

 
Classes 

● Blueprints​ for objects 
● Specify what properties (data) and methods (instructions) objects of their type will 

have 
● Can be expressed on paper as ​class definitions 

 
Class definitions 

● List a class’ name, properties and methods in text form 
● Independent of any particular programming language 
● A method or property that is listed as ​private ​can only be accessed from within an 

object 
● Public ​methods allow an interface for accessing and modifying a class’ private 

properties 
 

Car = Class { 
  Private: 
    Manufacturer: String 
    Model: String 
    EngineCapacity: Float 
    IsTaxed: Boolean 
  Public: 
    Function GetManufacturer 
    Function GetModel 
    Function GetEngineCapacity 
    Function GetIsTaxed 
    Procedure SetDetails 
} 

 
Encapsulation 

● The name given to the process of ​combining methods and procedures to form an 
object ​in object-oriented programming 

● An object is said to ​encapsulate its contents​, forming a ​single entity​ which 
encompasses all of the object’s properties and methods 

● Allows the development of large programs to be ​split across a team of developers 
 
 

www.pmt.education



Inheritance 
● Allows one class to​ share the properties and methods of another class 
● Classes which use inheritance can have ​their own ​ properties and methods too 
● Can be described as an ​“is a” ​relationship 
● Shown in class definitions by ​the name of the inherited class ​featuring ​ in brackets 

as highlighted below 
 

DeLorean = Class ​(Car)​ { 
  Private: 
    ReactorOutput: Integer 
    FluxCapacitorInput: Integer 
  Public: 
    Function GetReactorOutput 
    Function GetFluxCapacitorInput 
    Procedure SetDetails (Override) 
} 

 
Polymorphism 

● Comes from the Greek for “many forms” 
● Occurs when objects are ​processed differently depending on their class 

 
Overriding 

● An overridden method has​ the same name ​as a method in an inherited class ​ but 
different implementation 

● The word ​override ​is used in class descriptions (including the one above) to indicate 
that the implementation of a method in one class differs from the implementation of 
the method with the same name in the inherited class 

 
Association 

● Two objects that are associated can be described as having a ​“has a” relationship 
● For example, objects of the classes ​Car​ and ​Driver​ could be associated as a car 

has a ​driver 
● An associated object​ forms part of its container object​ as a property 
● There are ​two specific types ​of association: 

○ Aggregation 
○ Composition 

● Aggregation ​is the ​weaker ​of the two kinds of association 
● When an object is associated with another by aggregation, it ​will still exist​ if its 

containing object is destroyed 
● Composition ​is a ​stronger ​relationship between classes 
● If two objects are associated by composition and the containing object is destroyed, 

the associated object is ​also destroyed 
 

www.pmt.education



Why is object-oriented programming used? 
● Object-oriented programming provides programs with a ​clear structure 
● This makes developing and testing programs ​easier ​for developers 
● Using the paradigm allows for large projects to be ​divided among a team ​ of 

developers 
● The use of classes allows code to be ​reused ​throughout the same program and 

even in other programs 
● This improves the ​ space efficiency ​of code 

 
Object-oriented design principles 

 
● There are​ three design principles​ used in object-oriented programming that you 

need to be aware of: 
○ Encapsulate what varies 
○ Favour composition over inheritance 
○ Program to interfaces, not implementation 

 
Encapsulate what varies 

● Any requirements ​which are likely to change in the future ​should be ​encapsulated in 
a class 

● This way, any future changes can be ​ easily made when required 
 
Favour composition over inheritance 

● Wherever possible, composition should be used over inheritance 
● Composition is seen as a ​ more flexible relationship ​between objects 
● Composition ​ isn’t always appropriate ​and inheritance should still be used in any 

such situations 
 
Program to interfaces, not implementation 

● Allows​ unrelated classes ​to make use of​ similar methods 
● An interface is defined as ​a collection of abstract procedures​ that can be 

implemented by unrelated classes 
● When a new object is created, it can​ implement an interface ​ which provides it with 

the correct properties and methods 
 
 
 
 
 
 
 

www.pmt.education



Class diagrams 
 

● Visually ​represent the ​relationships ​that exist between classes 
● Classes are represented by ​boxes  
● Different ​connectors ​represent different kinds of relationship between classes 

 
Inheritance diagrams 

● Show the different ​ inheritance relationships 
that exist between classes  

● Inheritance is shown with ​unfilled arrows 
which point from an inherited class​ towards 
the class which inherits it 

● Inheritance arrows should always point 
upwards 

 
Association 

● Shown in class diagrams with​ diamond headed​ arrows 
 

Aggregation 
 

 
 

Shown with an ​unfilled ​diamond 
headed arrow 

Composition 
 

 
 

Shown with a ​filled ​diamond 
headed arrow 

 
 
 
 
 
 
 
 
 
 
 
 
 

www.pmt.education



Class diagrams with properties and methods 
● Class diagrams can contain ​more information ​ about classes than just their name 
● A class can be represented by ​three boxes​: 

○ The uppermost box contains the class name 
○ The middle box contains the class’ properties 
○ The bottom box contains the class’ methods 

● A ​plus sign ​indicates that a property or method is ​public 
● A ​minus ​indicates that the property or method is ​private 
● A ​pound ​symbol (#) indicates that a property or method is ​protected 
● Protected properties and methods are ​accessible from within the object that 

declares them ​and also from any ​inherited ​objects 
 

Student 

- Name: String 
- Age: Integer 

+ GetName 
+ GetAge 
+ SetDetails 

 
 

www.pmt.education


