

AQA Computer Science A-Level
4.1.1 Programming

Advanced Notes

www.pmt.education

Specification:

4.1.1.1 Data types:

Understand the concept of a data type.
Understand and use the following appropriately:

● integer
● real/float
● Boolean
● character
● string
● date/time
● pointer/reference
● records (or equivalent)
● arrays (or equivalent)

Define and use user-defined data types based on language-defined
(built-in) data types.

4.1.1.2 Programming concepts:

Use, understand and know how the following statement types can be
combined in programs:

● variable declaration
● constant declaration
● assignment
● iteration
● selection
● subroutine (procedure / function)

Use definite and indefinite iteration, including indefinite iteration with the
condition(s) at the start or the end of the iterative structure. A theoretical
understanding of condition(s) at either end of an iterative structure is required,
regardless of whether they are supported by the language being used.

Use nested selection and nested iteration structures.
Use meaningful identifier names and know why it is important to use

them

www.pmt.education

4.1.1.3 Arithmetic operations
Be familiar with and be able to use:

● addition
● subtraction
● multiplication
● real/float division
● integer division, including remainders
● exponentiation
● rounding
● truncation

4.1.1.4 Relational operations in a programming language

Be familiar with and be able to use:
● equal to
● not equal to
● less than
● greater than
● less than or equal to
● greater than or equal to

4.1.1.5 Boolean operations in a programming language

Be familiar with and be able to use:
● NOT
● AND
● OR
● XOR

4.1.1.6 Constants and variables in a programming language

Be able to explain the differences between a variable and a constant.
Be able to explain the advantages of using named constants.

www.pmt.education

4.1.1.7 String-handling operations in a programming language
Be familiar with and be able to use:

● length
● position
● substring
● concatenation
● character → character code
● character code → character
● string conversion operations

4.1.1.8 Random number generation in a programming language

Be familiar with, and be able to use, random number generation.

4.1.1.9 Exception handling

Be familiar with the concept of exception handling.
Know how to use exception handling in a programming language with

which students are familiar.

4.1.1.10 Subroutines (procedures/functions)

Be familiar with subroutines and their uses.
Know that a subroutine is a named ‘out of line’ block of code that may

be executed (called) by simply writing its name in a program statement.
Be able to explain the advantages of using subroutines in programs.

4.1.1.11 Parameters of subroutines

Be able to describe the use of parameters to pass data within
programs.

Be able to use subroutines with interfaces.

4.1.1.12 Returning a value/values from a subroutine

Be able to use subroutines that return values to the calling routine.

www.pmt.education

4.1.1.13 Local variables in subroutines
Know that subroutines may declare their own variables, called local

variables, and that local variables:
● exist only while the subroutine is executing
● are accessible only within the subroutine

Be able to use local variables and explain why it is good practice to do
so.

4.1.1.14 Global variables in a programming language

Be able to contrast local variables with global variables.

4.1.1.15 Role of stack frames in subroutine calls

Be able to explain how a stack frame is used with subroutine calls to
store:

● return addresses
● parameters
● local variables

4.1.1.16 Recursive techniques

Be familiar with the use of recursive techniques in programming
languages (general and base cases and the mechanism for implementation).

Be able to solve simple problems using recursion.

www.pmt.education

Data Types

The way in which data is stored depends on what the data is. A data type is defined by the
values it can take or the operations which can be performed on it.

In some situations, it might be possible to store one piece of data using various different
data types. In this case, the programmer must decide which option is the best suited to
solving a particular problem or which is the most memory-efficient.

For example, if a programmer needs to store a user’s age in years, they could use a string
or an integer . In this situation, using an integer would be the best option, because a
person’s age is only ever going to contain numerical digits.

Data type Description

Integer A whole number, positive or negative, including zero.

Real / Float A positive or negative number which can have a
fractional part.

Boolean A value which is either true or false.

Character A single number, letter or symbol.

String A collection of characters.

Data / Time A way of storing a point in time, many different formats
are used.

Pointer / Reference A way of storing memory addresses.

Records A collection of fields, each of which could have a
different data type. You can think of a record as a row
from a table.

Arrays A finite, indexed set of related elements each of which
has the same data type.

www.pmt.education

User-defined data types

User-defined data types are derived from existing data
types in order to create a customised data structure.
Creating and using user-defined data types allows a
programmer to ensure that a solution is as memory
efficient as possible .

For example, a shop might use a user-defined data
type called Customer to store information about their
customers. The user-defined data type might have
attributes like Forename, Surname and EmailAddress.

The way in which you use user-defined data types differs between programming
languages . It’s important that you know how to use them in your chosen language.

Programming Concepts

Programming languages support a variety of different statement types, some of which are
explained in the table below.

Statement type Description

Variable declaration Creating a variable for the first time, giving it a name
and sometimes a data type. This allocates a portion of
the computer’s memory to the variable.

Constant declaration The same as variable declaration, but when creating a
constant. The value of a constant does not change
while the program is running.

Assignment Giving a constant or variable a value.

Iteration Repeating an instruction, this could be definite or
indefinite (see below).

Selection Comparing values and choosing an action based on
those values.

Subroutine A named block of code containing a set of instructions
designed to perform a frequently used operation.

www.pmt.education

Definite and indefinite iteration
Iteration is the process of repeating a block of code. Examples of iteration include for
loops and while loops.

Definite iteration is a type of iteration in which the number of repetitions required is known
before the loop starts.

In contrast to definite iteration, indefinite iteration is used when the number of repetitions
required is not known before the loop starts.

 FOR Count ← 0 TO 63
 OUTPUT Count

 ENDFOR

This is an example of definite iteration. The
for loop will run 64 times before finishing.

 WHILE Temperature = 18
 Temperature = GetTemp()

 ENDWHILE

The while loop above uses indefinite
iteration. The number of repetitions is not
known before the loop begins.

Nested Structures
Selection structures and iteration structures can be nested.

This means that one structure is placed within another and
can easily be identified by different levels of indentation in
code.

For example, the pseudocode below consists of an if
structure, containing further selection and iteration structures.

Whenever a new
selection or iteration
structure begins, the
code moves to a
higher level of
indentation, making
the code easier for
humans to
understand .

IF Colour = “RED” THEN
WHILE Colour = “RED”

Colour ← UpdateColour()
ENDWHILE

ELSE
IF Colour = “GREEN” THEN

WHILE Colour = “GREEN”
Colour ← UpdateColour()

ENDWHILE
ELSE

Colour ← “RED”
ENDIF

ENDIF

www.pmt.education

Meaningful Identifier Names
When declaring a constant, variable or subroutine, it’s
important to give it a sensible and meaningful identifier name.
This makes it easier for others to understand what the
purpose of the named object is within the program.

If a different programmer, who was unfamiliar with your
program, were to read the code, they should be able to work
out the purpose of a constant, variable or subroutine from its
name.

Arithmetic Operations

The following operations can be applied to operands by your programming language.
Different languages notate these operations differently, so ensure that you’re familiar with
your chosen language’s approach.

Operation Description Example

Addition When two values are added, the result is
the sum of the two values.

128 + 42 = 170

Subtraction When one value is subtracted from another,
the result is the difference between the two
numbers.

34 - 13 = 21

Multiplication The product of two numbers is returned
when multiplied.

64 * 2 = 128

Real / Float
Division

When one value is divided by another, both
a quotient and a remainder are returned.

12 / 8 = 1.5

Integer Division Integer division returns just the whole
number part of a division.

12 \ 8 = 1
Or 12 DIV 8 = 1

Modulo Returns the remainder of an integer
division.

12 MOD 8 = 4

Exponentiation Raising one value to the power of another. 2 ^ 6 = 64

Rounding Limiting the degree of accuracy of a
number, for example, to a set number of
significant figures.

3.14159 = 3.14
to 3 significant figures

Truncation Removing the decimal part of a number.
Truncation always returns the whole part of
the number and never rounds up.

3.14159 truncated = 3

www.pmt.education

Relational Operations

You can make use of relational operators whenever you need to compare two values.
They are used in iterative and selection structures as well as for base cases in recursion.

Operation Example

Equal to 12 = 12

Not equal to 16 <> 413
16 != 413

Less than 75 < 422

Greater than 19 > 18

Less than or equal to 6 >= 22
95 >= 95

Greater than or equal to 20 >= 126
44 >= 44

Boolean Operations

As explained earlier in this document, a Boolean data type is one whose value can only
ever be true or false . There are a series of operations that can be performed on Boolean
values.

Operation Description Example

NOT The opposite of a
Boolean value

NOT 1 = 0

AND The product of two
Boolean values

1 AND 1 = 1
0 AND 1 = 0

OR The sum of two Boolean
values

1 OR 0 = 1
1 OR 1 = 1

XOR True if strictly one of two
values is true

1 XOR 1 = 0
1 XOR 0 = 1

www.pmt.education

Constants and Variables

When a program needs to store data, it usually does so using one of two types of data
item: constants or variables.

As their name suggests, variables can change their value during the execution of a
program, whereas a constant’s value cannot change once assigned.

Constants can be used for storing data that doesn’t need to
change such as a value for pi or the number of days in a
year. Using constants allows values to be given identifier
names which makes code easier for a human to understand.

Furthermore, should a constant value be required multiple
times throughout a program, using a constant makes
changing that value much easier as it only needs to be updated in one place.

Using hard-coded values Using constants

HoursWorked ← USERINPUT
PAY ← 14 * HoursWorked
OUTPUT PAY

HourlyRate ← 14
HoursWorked ← USERINPUT
PAY ← HourlyRate * HoursWorked
OUTPUT PAY

The pseudocode examples above show two different approaches to the same problem.
One approach uses hard-coded values whereas the other uses constants.

The code which makes use of constants is easier to understand as it clearly specifies that
14 refers to an hourly rate. In the example which uses hard-coded values, it’s difficult to
understand why HoursWorked is being multiplied by 14.

www.pmt.education

String-handling operations

As discussed earlier in this document, a string is a collection of characters . Thanks to their
composition, strings can have various functions applied to them.

Function Description

Length Returns the number of characters in a specified string.

Position Returns the position of a specified character within a string.

Substring Given a starting position and a length, returns a portion of a
string.

Concatenation Joining two or more strings together to form a new, longer
string.

Character to character
code

Returning the character code which corresponds to a
specified character.

Character code to
character

Returning the character represented by a given character
code.

String to integer Converting a string to an integer.

String to float Converting a string to a float.

Integer to string Converting an integer to a string.

Float to string Converting a float to a string.

Date / time to string Converting a date / time data type to a string.

String to date / time Converting a string to a date / time data type.

.

www.pmt.education

Random number generation

Most high level programming languages have the ability to
generate random numbers .

A built-in function takes a seed value and uses a series of
mathematical operations to arrive at a number. However, a
computer can never generate a truly random number and as
such, computer-generated random numbers are said to be
pseudorandom.

It’s important that you make yourself familiar with random number generation in your
chosen programming language.

Exception handling

When an error occurs in program code, an “exception” is said to be thrown. This could be
caused by using the wrong data type, attempting to divide by zero or attempting to access
a non-existent element in an array to name a few examples.

Once an exception has been thrown, the computer has to
handle the exception to avoid crashing. It does this by
pausing execution of the program and saving the current
volatile state of the program on the system stack before
running a section of code called a catch block.

This code will prevent the program from crashing and might inform the user that an error
has occurred. Once the exception has been handled, the program uses the system stack
to restore its previous state before resuming execution.

Subroutines

A subroutine is a named block of code containing a set of
instructions designed to perform a frequently used operation.
Using subroutines reduces repetition of code and hence
makes code more compact and easier to read.

Both functions and procedures are types of subroutine and
can be called by writing their name in a program statement.
While both functions and procedures can return a value,
functions are required to whereas procedures may not.

www.pmt.education

Parameters of subroutines

Parameters are used to pass data between subroutines within programs. Specified within
brackets after a subroutine call, parameters hold pieces of information that the subroutine
requires to run.

Length ← USERINPUT
Width ← USERINPUT
OUTPUT CalculateArea(Length, Width)

SUBROUTINE CalcualteArea(x, y)

RETURN x * y
ENDSUBROUTINE

The subroutine CalculareArea in the pseudocode above takes two parameters,
Length and Width. It then returns the product of the two values.

The actual value passed by a parameter is called an argument . If a rectangle with sides of
height 4 and width 6 was input into CalculateArea, the parameters Length and Width
would have arguments 4 and 6 respectively.

Returning values from a subroutine

A subroutine can return a value. One that always returns a value is called a function, but
don’t think that procedures can’t return a value, they can (but don’t always).

Subroutines that return values can appear in expressions and be assigned to a variable or
parameter .

Length ← USERINPUT
Width ← USERINPUT
Area ← CalculateArea(Length, Width)
OUTPUT Area

SUBROUTINE CalcualteArea(x, y)

RETURN x * y
ENDSUBROUTINE

For example, in the pseudocode above, the variable Area is assigned to the subroutine
CalculateArea. The value taken by the variable will be the value returned by the
subroutine.

www.pmt.education

Local variables in subroutines

A local variable is a variable that can only be accessed from the subroutine within which it
is declared. They only exist in the computer’s memory when their parent subroutine is
executing. This makes local variables a more memory efficient way of storing data than
using global variables, which are discussed below.

Global variables

In contrast to local variables, global variables can be accessed from any part of a program
and exist in memory for the entire duration of the program’s execution.

Local variables can be given the same identifier name as global variables, although this is
generally considered bad practice. When the local variable’s value is changed, the global
variable’s value remains the same.

The role of stack frames in subroutine calls

Stack frames are used by computers to store return addresses, parameters and local
variables for each subroutine call that occurs during the execution of a program.

If one subroutine calls another, nesting is said to occur. Each subroutine call will be
pushed onto the computer’s call stack in the form of a stack frame before the subroutine’s
code begins to execute. When the nested subroutine finishes executing, the stack frame is
popped from the call stack and the computer uses the information to return to execution of
the previous subroutine.

1 Name ← USERINPUT
2 OUTPUT Greeting(Name)
3
4 SUBROUTINE Greeting(Name)
5 TimeOfDay ← GetTimeOfDay()
6 RETURN “Good “ + TimeOfDay + Name
7 ENDSUBROUTINE
8
9 SUBROUTINE GetTimeOfDay()
10 IF Time < 12:00 THEN
11 RETURN “morning”
12 ELSE
13 RETURN “afternoon”
14 ENDIF
15 ENDSUBROUTINE

www.pmt.education

Stack Frame Example

When the pseudocode above is run, the subroutine GetTimeOfDay is called from within
the subroutine Greeting and nesting occurs.

The first stack frame to be pushed onto the call stack is for the subroutine Greeting

:

 Call Stack

Subroutine
Name

Return
Address

Parameters Local
Variables

Greeting Line 2 Name = “Sarah” Null

When the subroutine GetTimeOfDay is called, another stack frame is pushed onto the
call stack and is placed on top of the frame representing Greeting:

 Call Stack

Subroutine
Name

Return
Address

Parameters Local
Variables

GetTimeOfDay Line 5 Null Null

Subroutine
Name

Return
Address

Parameters Local
Variables

Greeting Line 2 Name = “Sarah” Null

www.pmt.education

When the subroutine GetTimeOfDay completes, its corresponding stack frame is popped
from the call stack:

 Call Stack

Subroutine
Name

Return
Address

Parameters Local
Variables

Greeting Line 2 Name = “Sarah” Null

The computer now takes the stack frame at the top of the stack and goes to the specified
return address. Any parameters and local variables are restored.

Once the subroutine Greeting has completed, the final stack frame is popped from the
call stack, leaving it empty.

 Call Stack

www.pmt.education

Recursive techniques

A recursive subroutine is one which is defined in terms of itself . This means that
somewhere within the recursive subroutine, there is a call to the subroutine itself.

Any recursive subroutine must meet have a stopping
condition (called a base case) which must be met at some
point in the execution of the program.

If an algorithm calls itself, but doesn’t have a base case, it
will never terminate. This will cause a stack overflow as more
and more stack frames are pushed onto the call stack.

The pseudocode below is an example of a recursive
algorithm which can be used to calculate the factorial of a
number, passed to the subroutine as a parameter .

1 SUBROUTINE Factorial(Value)
2 IF Value = 0 THEN
3 RETURN 1
4 ELSE
5 RETURN Value * Factorial(Value - 1)
6 ENDIF
7 ENDSUBROUTINE

The algorithm can be called recursive because it calls itself on line 5 (shown in bold). The
algorithm’s base case is when Value = 0. In this case, the algorithm doesn’t use
recursion to return a result.

When a problem can be solved recursively, it can often also be solved using iteration .
While iterative solutions are often easier to program , recursive solutions can be more
compact in code.

For example, the two pseudocode algorithms below
represent two possible approaches to the binary search
algorithm . The first approach uses iteration while the second
uses recursion .

www.pmt.education

Iterative Binary Search Example

SUBROUTINE BinarySearch(Array, ToFind)

Low ← 0
High ← Length(Array)
Middle ← 0
WHILE Low <= High

Middle ← (Low + High) / 2
IF Array(Middle) > ToFind THEN

High ← Middle - 1
ELSEIF Array(Middle) < ToFind THEN

Low ← Middle + 1
ELSE

RETURN Middle
ENDIF

ENDWHILE
ENDSUBROUTINE

Recursive Binary Search Example

SUBROUTINE BinarySearch(Low, High, Array, ToFind)

Middle ← (Low + High) / 2
IF ToFind < Array(Middle) THEN

RETURN BinarySearch(Low, Middle, Array, ToFind)
ELSEIF ToFind > Array(Middle) THEN

RETURN BinarySearch(Middle, High, Array, ToFind)
ELSEIF ToFind = Array(Middle) THEN

Return Middle
ENDIF

ENDSUBROUTINE

www.pmt.education

