Mark Scheme - 3

1.

Su	b-sect	ion	Mark	Answer	Accept	Neutral answer	Do not accept
(a)			3	calcium and chlorine (1) copper(II) oxide / copper oxide (1) MgBr ₂ (1)		Ca and Cl / Cl ₂	
(b)	(i)		1	carbon oxygen both needed			
	(ii)	Ι	1	₩			
		II	1		follow through (ft) from (b)(i)		

Sub-section	Mark	Answer	Accept	Neutral	Do not accept
				answer	
(a)	3	mass carbon and hydrogen divided by respective $A_{\rm r}$ values e.g. carbon 9/12 and hydrogen 2/1 (1) ratio of 3:8 (1) C_3H_8 (1)			
		ecf possible if formula given is an alkane award (1) mark only for correct answer with no working			
PhysicsAnd	2 MathsT	$M_{\rm r}({\rm C_4H_{10}}) = 58$ (1) $M_{\rm r}({\rm C_4H_{10}}) = 82.76$ (1) consequential marking	82.8 / 83		

Sub-section	on Mo	ark	Answer	Accept	Neutral answer	Do not accept
	3	3	sodium bromide (1)			
			hydrogen, sulfur and oxygen (1)		H, S and O	
			K ₂ O (1)			

Sub	-section	Mark		Answer	Accept	Neutral answer	Do not accept
		4	NH ₄ ⁺	(1)			900
			Li ₂ SO ₄	(1)	Li ⁺ ₂ SO ₄ ²⁻		
			Pb(NO ₃) ₂	(1)	Pb ²⁺ (NO ₃ ⁻) ₂		
			HCO ₃	(1)			

Su	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
(a)	(i)		1	sodium and chloride Na^+ and $\mathrm{C}\Gamma$	·		chlorine Na / Cl
	(ii)	5	1	NaCl	Na ⁺ Cl ⁻		
(b)			1	too little present / concentration very small / concentration of iodide ions much smaller than that of chloride / it would take a lot of seawater to get a small amount of iodide from it	reference to chlorine / iodine	reference to cost or energy quoting numbers from table	

Sub	o-section	Mark	Answer	Accept	Neutral answer	Do not accept
(a)		3	Ba(OH) ₂ (1) Fe ³⁺ (1) HPO ₄ ²⁻ (1)			
(b)		2	sodium loses an electron (1) bromine gains an electron (1)	electrons transferred (1)		

Su	b-sect	ion	Mark	Answer	Accept	Neutral answer	Do not accept
(a)			2	AICl ₃ (1) formula must be correct to get balancing mark 2,3,2 (1)			
(b)	(i)		2	if incorrect allow (1) for (27 x 2) + (16 x 3) no ecf within part (i)			
	(ii)		1	ecf possible from part (i)	47.1		

Su	b-sect	ion	Mark	Answer	Accept	Neutral answer	Do not accept
(a)	(i)		1	sodium atom 1 chlorine atom 7 both needed			
	(ii)	I	2	sodium (atom) loses one electron (1) chlorine (atom) gains one electron (1) award (2) for electron transferred from sodium to chlorine maximum (1) if transfer of more than 1 electron implied			
		II	1	sodium chloride / NaCl			
(b)			2	23 + 35.5 + 3(16) (1) 106.5 (1) award (2) for cao no ecf			

Su	ub-secti	ion	Mark	Answer	Accept	Neutral answer	Do not accept
(a)	(i)		1	Na ₂ SO ₄			
	(ii)		1	ammonium fluoride ammonium sulfate magnesium fluoride magnesium sulfate - any two for one mark	NH ₄ F (NH ₄) ₂ SO ₄ MgF ₂ MgSO ₄		
(b)			2	B (1) contains the most fluoride (1)		lot of fluoride	fluorine

Su	b-sect	ion	Mark	Answer	Accept	Neutral answer	Do not accept
(a)	(i)		1	2, 8, 8			
	(ii)		1	D		Al	
	(iii)		2	B and D – both needed (1) they have the same number of electrons in their outer shell / they both have three electrons in their outer shell (1) 2 nd mark may be awarded if A and C given	boron and aluminium		A and C
(b)	(i)		1	40			
	(ii)		2	16 ÷ 40 (1) 40 (1) error carried forward from (i) correct answer only (2)			

Sub-section	Mark	Answer	Accept	Neutral answer	Do not accept
(a)	2	moles =conc × vol/1000 = 0.1×17.5 (1) 1000 = 0.00175 (1) award (2) for cao			
(b)	1	176			
(c)	2	ecf possible from parts (a) and (b) $mass = moles \times M_r = 0.00175 \times 176 (1)$ $0.308 \text{ g } /308 \text{ mg (correct unit required)}$ $therefore \text{ statement incorrect } (1)$	alternative method using given 300 mg mass		

Su	b-section	Mark	Answer	Accept	Neutral answer	Do not accept
(a)		2	(silicon difficult to classify) because it has metallic and non-metallic properties (1) response clearly indicating one or more metallic property and contrasting non-metallic property, e.g. it has a high melting point/boiling point like a metal but is brittle like a non-metal (2)	semi-metal / metalloid		it is a metal and a non-metal
(b)		1	Mg (ignore atomic number / mass number)		magnesium	
(c)	(i)	1	2			
	(ii)	1	Ag_2O	$Ag^{+}_{2}O^{2-}$		
(d)	(i)	1	antibacterial / antiviral / antifungal	kills germs / kills bacteria / antiseptic	disinfectant reduces smells	
	(ii)	1	silver nanoparticles can get into drinking water / water supplies / lakes / rivers could be dangerous to health / harmful / toxic don't know the effect / long term effect not known uncertainty must be implied		reference to the air / atmosphere / rain pollutes water / the environment	

Su	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
(a)			3	calcium, oxygen and hydrogen (1) $Na_2CO_3 \qquad \qquad (1)$ $Ca(NO_3)_2 \qquad \qquad (1)$			
(b)			1	H ₂ C ₂ O ₄	symbols in any order		

Sub-	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
(a)	(i)		1	atoms must be touching	•••		
	(ii)		1	NH ₃	H ₃ N		
(b)	(i)		1	O ₂ / He / Ne any two	oxygen / helium / neon		0
	(ii)		1	CO ₂ / CH ₄ / SO ₂ any two	carbon dioxide / methane / sulfur dioxide		
(c)	(i)		1	1			
	(ii)		1	5			
(d)	(i)		1	Mg ²⁺ Cl ⁻ both ions needed (including charges)	2CI ⁻		Cl 2
	(ii)		1	NaOH	Na [†] OH [−]		