Mark Scheme - 3 1. | Su | b-sect | ion | Mark | Answer | Accept | Neutral answer | Do not accept | |-----|--------|-----|------|--|------------------------------------|-----------------------------|---------------| | (a) | | | 3 | calcium and chlorine (1) copper(II) oxide / copper oxide (1) MgBr ₂ (1) | | Ca and Cl / Cl ₂ | | | (b) | (i) | | 1 | carbon oxygen both needed | | | | | | (ii) | Ι | 1 | ₩ | | | | | | | II | 1 | | follow through (ft)
from (b)(i) | | | | Sub-section | Mark | Answer | Accept | Neutral | Do not accept | |-------------|-------------|---|-----------|---------|---------------| | | | | | answer | | | (a) | 3 | mass carbon and hydrogen divided by respective $A_{\rm r}$ values e.g. carbon 9/12 and hydrogen 2/1 (1) ratio of 3:8 (1) C_3H_8 (1) | | | | | | | ecf possible if formula given is an alkane award (1) mark only for correct answer with no working | | | | | PhysicsAnd | 2
MathsT | $M_{\rm r}({\rm C_4H_{10}}) = 58$ (1)
$M_{\rm r}({\rm C_4H_{10}}) = 82.76$ (1) consequential marking | 82.8 / 83 | | | | Sub-section | on Mo | ark | Answer | Accept | Neutral answer | Do not accept | |-------------|-------|-----|---------------------------------|--------|----------------|---------------| | | 3 | 3 | sodium bromide (1) | | | | | | | | hydrogen, sulfur and oxygen (1) | | H, S and O | | | | | | K ₂ O (1) | | | | | Sub | -section | Mark | | Answer | Accept | Neutral answer | Do not accept | |-----|----------|------|-----------------------------------|--------|---|----------------|---------------| | | | 4 | NH ₄ ⁺ | (1) | | | 900 | | | | | Li ₂ SO ₄ | (1) | Li ⁺ ₂ SO ₄ ²⁻ | | | | | | | Pb(NO ₃) ₂ | (1) | Pb ²⁺ (NO ₃ ⁻) ₂ | | | | | | | HCO ₃ | (1) | | | | | | | | | | | | | | Su | Sub-section | | Mark | Answer | Accept | Neutral answer | Do not accept | |-----|-------------|---|------|---|---------------------------------|---|---------------------| | (a) | (i) | | 1 | sodium and chloride Na^+ and $\mathrm{C}\Gamma$ | · | | chlorine
Na / Cl | | | (ii) | 5 | 1 | NaCl | Na ⁺ Cl ⁻ | | | | (b) | | | 1 | too little present / concentration very small / concentration of iodide ions much smaller than that of chloride / it would take a lot of seawater to get a small amount of iodide from it | reference to chlorine / iodine | reference to cost
or energy
quoting numbers
from table | | | Sub | o-section | Mark | Answer | Accept | Neutral answer | Do not accept | |-----|-----------|------|---|------------------------------|----------------|---------------| | (a) | | 3 | Ba(OH) ₂ (1) Fe ³⁺ (1) HPO ₄ ²⁻ (1) | | | | | (b) | | 2 | sodium loses an electron (1) bromine gains an electron (1) | electrons
transferred (1) | | | | Su | b-sect | ion | Mark | Answer | Accept | Neutral answer | Do not accept | |-----|--------|-----|------|---|--------|----------------|---------------| | (a) | | | 2 | AICl ₃ (1) formula must be correct to get balancing mark 2,3,2 (1) | | | | | (b) | (i) | | 2 | if incorrect allow (1) for (27 x 2) + (16 x 3) no ecf within part (i) | | | | | | (ii) | | 1 | ecf possible from part (i) | 47.1 | | | | Su | b-sect | ion | Mark | Answer | Accept | Neutral answer | Do not accept | |-----|--------|-----|------|---|--------|----------------|---------------| | (a) | (i) | | 1 | sodium atom 1 chlorine atom 7 both needed | | | | | | (ii) | I | 2 | sodium (atom) loses one electron (1) chlorine (atom) gains one electron (1) award (2) for electron transferred from sodium to chlorine maximum (1) if transfer of more than 1 electron implied | | | | | | | II | 1 | sodium chloride / NaCl | | | | | (b) | | | 2 | 23 + 35.5 + 3(16) (1)
106.5 (1)
award (2) for cao
no ecf | | | | | Su | ub-secti | ion | Mark | Answer | Accept | Neutral answer | Do not accept | |-----|----------|-----|------|--|---|-----------------|---------------| | (a) | (i) | | 1 | Na ₂ SO ₄ | | | | | | (ii) | | 1 | ammonium fluoride
ammonium sulfate
magnesium fluoride
magnesium sulfate
- any two for one mark | NH ₄ F
(NH ₄) ₂ SO ₄
MgF ₂
MgSO ₄ | | | | (b) | | | 2 | B (1) contains the most fluoride (1) | | lot of fluoride | fluorine | | Su | b-sect | ion | Mark | Answer | Accept | Neutral answer | Do not accept | |-----|--------|-----|------|--|---------------------|----------------|---------------| | (a) | (i) | | 1 | 2, 8, 8 | | | | | | (ii) | | 1 | D | | Al | | | | (iii) | | 2 | B and D – both needed (1) they have the same number of electrons in their outer shell / they both have three electrons in their outer shell (1) 2 nd mark may be awarded if A and C given | boron and aluminium | | A and C | | (b) | (i) | | 1 | 40 | | | | | | (ii) | | 2 | 16 ÷ 40 (1) 40 (1) error carried forward from (i) correct answer only (2) | | | | | Sub-section | Mark | Answer | Accept | Neutral answer | Do not accept | |-------------|------|--|---|----------------|---------------| | (a) | 2 | moles =conc × vol/1000
= 0.1×17.5 (1)
1000
= 0.00175 (1)
award (2) for cao | | | | | (b) | 1 | 176 | | | | | (c) | 2 | ecf possible from parts (a) and (b) $mass = moles \times M_r = 0.00175 \times 176 (1)$ $0.308 \text{ g } /308 \text{ mg (correct unit required)}$ $therefore \text{ statement incorrect } (1)$ | alternative
method using
given 300 mg
mass | | | | Su | b-section | Mark | Answer | Accept | Neutral answer | Do not accept | |-----|-----------|------|---|---|--|----------------------------------| | (a) | | 2 | (silicon difficult to classify) because it has metallic and non-metallic properties (1) response clearly indicating one or more metallic property and contrasting non-metallic property, e.g. it has a high melting point/boiling point like a metal but is brittle like a non-metal (2) | semi-metal /
metalloid | | it is a metal and
a non-metal | | (b) | | 1 | Mg
(ignore atomic number / mass number) | | magnesium | | | (c) | (i) | 1 | 2 | | | | | | (ii) | 1 | Ag_2O | $Ag^{+}_{2}O^{2-}$ | | | | (d) | (i) | 1 | antibacterial / antiviral / antifungal | kills germs /
kills bacteria /
antiseptic | disinfectant reduces smells | | | | (ii) | 1 | silver nanoparticles can get into drinking water / water supplies / lakes / rivers could be dangerous to health / harmful / toxic don't know the effect / long term effect not known uncertainty must be implied | | reference to the air
/ atmosphere / rain
pollutes water / the
environment | | | Su | Sub-section | | Mark | Answer | Accept | Neutral answer | Do not accept | |-----|-------------|--|------|--|----------------------|----------------|---------------| | (a) | | | 3 | calcium, oxygen and hydrogen (1) $Na_2CO_3 \qquad \qquad (1)$ $Ca(NO_3)_2 \qquad \qquad (1)$ | | | | | (b) | | | 1 | H ₂ C ₂ O ₄ | symbols in any order | | | | Sub- | Sub-section | | Mark | Answer | Accept | Neutral answer | Do not accept | |------|-------------|--|------|--|---|----------------|---------------| | (a) | (i) | | 1 | atoms must be touching | ••• | | | | | (ii) | | 1 | NH ₃ | H ₃ N | | | | (b) | (i) | | 1 | O ₂ / He / Ne any two | oxygen / helium /
neon | | 0 | | | (ii) | | 1 | CO ₂ / CH ₄ / SO ₂ any two | carbon dioxide /
methane /
sulfur dioxide | | | | (c) | (i) | | 1 | 1 | | | | | | (ii) | | 1 | 5 | | | | | (d) | (i) | | 1 | Mg ²⁺ Cl ⁻ both ions needed (including charges) | 2CI ⁻ | | Cl 2 | | | (ii) | | 1 | NaOH | Na [†] OH [−] | | |