## **WJEC Chemistry GCSE**

## 3: Chemical Formulae, Equations and Amounts of Substance

**Practice Questions** 

**England Specification** 

1.

(a) The table below shows information about four ionic compounds. Complete the table.

[3]

| Compound          | Formula            | Elements present      |
|-------------------|--------------------|-----------------------|
| aluminium oxide   | $\mathrm{Al_2O_3}$ | aluminium and oxygen  |
| calcium chloride  | CaCl <sub>2</sub>  | and                   |
|                   | CuO                | copper and oxygen     |
| magnesium bromide |                    | magnesium and bromine |

| (b) | The following | diagram | represents o | carbon | dioxide, | $CO_2$ |
|-----|---------------|---------|--------------|--------|----------|--------|
|-----|---------------|---------|--------------|--------|----------|--------|



| (i) Use the diag | gram to complete the key. | [1] |
|------------------|---------------------------|-----|
| hydroger         | 1                         |     |
| carbon           |                           |     |
| chlorine         |                           |     |
| oxygen           |                           |     |

- (ii) Using the key, draw a diagram that represents a molecule of
  - I. water,  $H_2O$  [1]
  - II. tetrachloromethane, CCl<sub>4</sub> [1]

6

2.

| (a) | An unknown alkane, X, was found Calculate the simplest formula for | l to contain 9.0g of carbon and 2.0g of hydrogen.<br>this alkane. | [3]          |
|-----|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------|
|     | $A_{\rm r}(H) = 1$                                                 | $A_{\rm r}({\rm C}) = 12$                                         |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    | Simplest formula                                                  |              |
|     |                                                                    |                                                                   |              |
| (b) | Calculate the percentage by mass atoms.                            | s of carbon in butane, an alkane containing four c                | arbon<br>[2] |
|     | $A_{\rm r}(H) = 1$                                                 | $A_{\rm r}({\rm C})=12$                                           |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   |              |
|     | F                                                                  | Percentage by mass of carbon =                                    | %            |
|     |                                                                    |                                                                   |              |
|     |                                                                    |                                                                   | 5            |

3.

Complete the following table.

| ٠ |    |    | 5 |
|---|----|----|---|
| ł | ۲. | 2. | э |
| 3 | ď  | ٦. | В |
| ŧ | -  | 7  | з |

| Compound        | Formula          | Names of elements present |
|-----------------|------------------|---------------------------|
| lead iodide     | PbI <sub>2</sub> | lead and iodine           |
|                 | NaBr             | sodium and bromine        |
| sulfuric acid   | $ m H_2SO_4$     |                           |
| potassium oxide |                  | potassium and oxygen      |

3

4.

Complete the following table.

[4]

| Name of compound          | Formula of positive ion | Formula of negative ion       | Formula of compound                |
|---------------------------|-------------------------|-------------------------------|------------------------------------|
| ammonium hydroxide        |                         | OH-                           | $\mathrm{NH_4OH}$                  |
| lithium sulfate           | $Li^{\pm}$              | SO <sub>4</sub> <sup>2-</sup> |                                    |
| lead nitrate              | Pb <sup>2+</sup>        | NO <sub>3</sub> -             |                                    |
| calcium hydrogencarbonate | Ca <sup>2+</sup>        |                               | Ca(HCO <sub>3</sub> ) <sub>2</sub> |

| *** | 4 |  |
|-----|---|--|

5. Seawater is an important raw material from which many different substances can be obtained. The table below shows the concentration (measured in g/kg of seawater) of the most abundant ions found in seawater.

| lon       | Concentration<br>(g/kg of seawater) |
|-----------|-------------------------------------|
| lithium   | 0.000174                            |
| fluoride  | 0.0013                              |
| sodium    | 10.77                               |
| magnesium | 1.29                                |
| chloride  | 19.35                               |
| potassium | 0.399                               |
| calcium   | 0.412                               |
| bromide   | 0.000067                            |
| iodide    | 0.0000005                           |

Use the information in the table to answer the following questions.

| (a)       | (i)          | Name the two most abundant ions in seawater.                                                                         | [1]        |  |
|-----------|--------------|----------------------------------------------------------------------------------------------------------------------|------------|--|
|           |              | and                                                                                                                  |            |  |
|           | (ii)         | Give the chemical formula of the compound formed from these ions.                                                    | [1]        |  |
| (b)       | Both<br>expe | chlorine and iodine were once obtained from seawater. Suggest why it is nsive to use seawater as a source of iodine. | too<br>[1] |  |
| ********* |              |                                                                                                                      | ********   |  |

6. (a) Complete the following table.

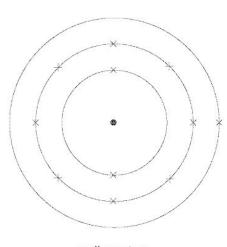
| Ŀ | v | l               |
|---|---|-----------------|
|   |   | •               |
|   |   |                 |
|   |   |                 |
|   |   |                 |
|   |   |                 |
|   |   | رى <sub>ا</sub> |

| Positive ion     | Negative ion                  | Formula                                         |
|------------------|-------------------------------|-------------------------------------------------|
| Na <sup>+</sup>  | Br <sup></sup>                | NaBr                                            |
| Ba <sup>2+</sup> | OH-                           |                                                 |
|                  | SO <sub>4</sub> <sup>2-</sup> | Fe <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> |
| K <sup>+</sup>   |                               | K₂HPO₄                                          |

| (b)   | sodium                                  |                                         |       | atom                                    | and a | a bromir  | e atom  | i form                                  | ions       | when | they | react | to | make<br>[2] |  |
|-------|-----------------------------------------|-----------------------------------------|-------|-----------------------------------------|-------|-----------|---------|-----------------------------------------|------------|------|------|-------|----|-------------|--|
|       |                                         |                                         |       |                                         |       |           |         |                                         |            |      |      | ,     |    |             |  |
| ••••• |                                         |                                         |       | • • • • • • • • • • • • • • • • • • • • |       | ********* | ******* | ************                            | ********** |      |      |       | •  | ********    |  |
|       | *************************************** | *************************************** | ••••• |                                         |       |           |         | *************************************** |            |      |      |       |    | **********  |  |

7. (a) Aluminium reacts with chlorine to form aluminium chloride. Complete and balance the symbol equation for the reaction taking place. [2]

|      |                   | 7 |
|------|-------------------|---|
| AI + | Cl <sub>2</sub> - |   |


- (b) Aluminium oxide, Al<sub>2</sub>O<sub>3</sub>, is found in bauxite.
  - (i) Calculate the relative formula mass  $(M_r)$  of aluminium oxide,  $Al_2O_3$ . [2]

$$A_{r}(AI) = 27$$
  $A_{r}(O) = 16$ 

$$M_{\rm r} ({\rm Al_2O_3}) = \dots$$

(ii) Using your answer from part (i) calculate the percentage of oxygen present in aluminium oxide,  ${\rm Al_2O_3}.$  [1]

8. The diagrams below show the electronic structure of a sodium atom and a chlorine atom.



sodium atom

chlorine atom

- Give the number of electrons in the outer shell of [1] a sodium atom. a chlorine atom.
- Sodium reacts with chlorine to form a white solid.
  - I State, in terms of electrons, what happens to sodium and chlorine atoms during this reaction.

II Complete the word equation for this reaction. [1]

sodium + chlorine ----

(b) Sodium chlorate, NaClO<sub>3</sub>, is used to bleach paper. Calculate the relative formula mass  $(M_r)$  of sodium chlorate. [2]

 $A_r(O) = 16$   $A_r(Na) = 23$   $A_r(CI) = 35.5$ 

 $M_r(NaClO_3) = \dots$ 

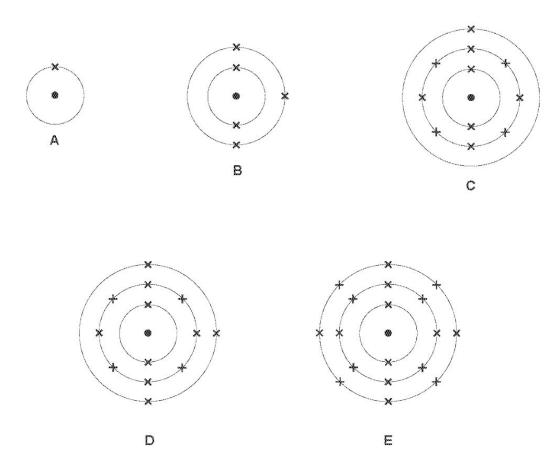
9. The table below gives information about the concentration of ions in drinking water from four different locations.

|          | Concentration of ions (mol/m³ of water) |                              |                  |               |                               |                   |  |  |  |  |  |
|----------|-----------------------------------------|------------------------------|------------------|---------------|-------------------------------|-------------------|--|--|--|--|--|
| Location | Na <sup>+</sup>                         | NH <sub>4</sub> <sup>+</sup> | Mg <sup>2+</sup> | ļ <del></del> | SO <sub>4</sub> <sup>2-</sup> | NO <sub>3</sub> - |  |  |  |  |  |
| A        | 3.4                                     | 2.1                          | 2.0              | 2.1           | 2.5                           | 2.3               |  |  |  |  |  |
| j        | 0.2                                     | 0.6                          | 2.7              | 4.4           | 0.0                           | 0.1               |  |  |  |  |  |
| C        | 0.0                                     | 0.3                          | 0.4              | 0.4           | 0.2                           | 0.0               |  |  |  |  |  |
| D        | 0.1                                     | 0.4                          | 0.0              | 0.0           | 0.4                           | 0.2               |  |  |  |  |  |

(i) Sodium sulfate can be formed from the ions found in water at location A. [1]

Write the formula of sodium sulfate.

(ii) Suggest the names of two compounds that could be formed from the ions present in the water at location C. [1]


Compound 1

Compound 2

(b) State the location where you would expect to find the least amount of tooth decay.

Give a reason for your choice. [2]

10. (a) The following diagrams represent atoms of 5 different elements, A, B, C, D and E. A, B, C, D and E are not chemical symbols.



(i) Give the electronic structure of E. [1]

(ii) Which letter represents aluminium? [1]

(iii) Give the letters of the two elements which are found in the same group of the Periodic Table and give a reason for your choice. [2]

| (b) | (i)  | Calculate the relative                | formula mass        | $(M_{\rm r})$ of sodium hydroxide, NaOH. | [1]              |
|-----|------|---------------------------------------|---------------------|------------------------------------------|------------------|
|     |      | $A_{\rm r}({\rm Na}) = 23$            | $A_{\rm r}(0) = 16$ | $A_r(H) = 1$                             |                  |
|     |      |                                       |                     |                                          |                  |
|     |      |                                       |                     | Relative formula mass =                  |                  |
|     | (ii) | Using your answer to hydroxide, NaOH. | part (i), calcula   | te the percentage by mass of oxygen      | in sodium<br>[2] |
|     |      |                                       |                     |                                          |                  |
|     |      |                                       |                     |                                          |                  |
|     |      |                                       | P                   | ercentage by mass of oxygen =            | %                |
|     |      |                                       |                     |                                          | I                |

11. An analytical chemist was asked to check the amount of vitamin C in a tablet. Vitamin C tablets contain ascorbic acid,  $C_6H_8O_6$ , and a starch "filler" which holds them together.

Ascorbic acid reacts with sodium hydroxide solution according to the equation below:

$$C_6H_8O_6$$
 + NaOH  $\longrightarrow$  NaC<sub>6</sub>H<sub>7</sub>O<sub>6</sub> + H<sub>2</sub>O



To determine how much vitamin C is present, a tablet was dissolved in water and titrated with sodium hydroxide solution of concentration 0.10 mol/dm³. The endpoint was determined using the indicator phenolphthalein. The procedure was repeated three times and the mean value of sodium hydroxide solution needed to neutralise a vitamin C tablet was found to be 17.5 cm³.

(a) Calculate the number of moles of sodium hydroxide in 17.5 cm<sup>3</sup> of the 0.10 mol/dm<sup>3</sup> solution.

Number of moles = ..... mol

(b) Calculate the relative molecular mass,  $M_{\rm r}$ , of ascorbic acid,  $C_6H_8O_6$ . [1]

$$A_{r}(H) = 1$$
  $A_{r}(O) = 16$   $A_{r}(C) = 12$ 

 $M_r = \dots$ 

(c) The label on the bottle states that each tablet contains 300 mg (0.3 g) of vitamin C. Using your answers to parts (a) and (b) show whether this statement is correct. [2]

5

12. (a) The table below shows some properties of three elements in the Periodic Table.

| Element    | Melting point<br>(°C) | Boiling point<br>(°C) | Appearance  | Malleable or brittle? | Electrical conductivity |
|------------|-----------------------|-----------------------|-------------|-----------------------|-------------------------|
| aluminium  | 660                   | 2519                  | shiny solid | malleable             | good                    |
| silicon    | 1414                  | 3265                  | shiny solid | brittle               | semiconductor           |
| phosphorus | 44                    | 280                   | white solid | brittle               | poor                    |

|     |              | cribe how the information in the table shows that silicon is difficult to classify as a all or a non-metal. [2]                                                               |   |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (b) | Give<br>Tabl | the <b>symbol</b> of the element which is found in Group 2 and Period 3 of the Periodic e. [1]                                                                                |   |
| (c) | (i)          | The chemical formula of copper(II) nitrate is $Cu(NO_3)_2$ . Give the number of nitrogen atoms in the formula $Cu(NO_3)_2$ . [1]                                              |   |
|     | (ii)         | Give the chemical formula of silver oxide. [1]                                                                                                                                |   |
| (d) |              | o-scale silver particles are added to socks to reduce the effects of smelly feet. Recent arch has found that these particles can easily leak into waste water during washing. |   |
|     | (i)          | State the property of nano-scale silver particles that makes them useful in socks.                                                                                            |   |
|     |              | [1]                                                                                                                                                                           |   |
|     | (ii)         | Suggest a reason why some scientists are concerned about nano-scale silver particles entering waste water. [1]                                                                | r |
|     |              |                                                                                                                                                                               |   |
|     |              |                                                                                                                                                                               | 7 |

## 13. (a) Complete the table below that shows information about four ionic compounds. [3]

| Compound          | Formula                        | Elements present             |
|-------------------|--------------------------------|------------------------------|
| aluminium oxide   | Al <sub>2</sub> O <sub>3</sub> | aluminium and oxygen         |
| calcium hydroxide | Ca(OH) <sub>2</sub>            |                              |
| sodium carbonate  |                                | sodium, carbon and oxygen    |
| calcium nitrate   |                                | calcium, nitrogen and oxygen |

|     | calcium muate         |                   | calcium, introgen and oxygen                                                            |       |
|-----|-----------------------|-------------------|-----------------------------------------------------------------------------------------|-------|
| (b) |                       |                   | ny plants. It can be made from oxalic acid. O:<br>o carbon atoms and four oxygen atoms. | xalic |
|     | Use this information  | to write the form | ula of oxalic acid.                                                                     | [1]   |
|     | Formula of oxalic act | id                |                                                                                         |       |

| 14. | (a) | The ke | y below repre              | sents at   | oms of sor  | ne element        | S.          |                 |                             |     |
|-----|-----|--------|----------------------------|------------|-------------|-------------------|-------------|-----------------|-----------------------------|-----|
|     |     |        |                            |            |             |                   | (           | $\bigcirc$      |                             |     |
|     |     |        | nitrogen, N                |            | hydrog      | gen, H            | оху         | /gen, O         |                             |     |
|     |     | (i) I  | Use the key to             | draw a     | diagram re  | presenting        | a molecul   | e of nitrou     | ıs oxide, N <sub>2</sub> O. | [1] |
|     |     |        |                            |            |             |                   |             |                 |                             |     |
|     |     |        |                            |            |             |                   |             |                 |                             |     |
|     |     | (ii) l | Use the key to             | give the   | chemical    | formula for       | the follow  | ing molec       | ule.                        | [1] |
|     |     |        | •                          |            |             |                   |             |                 |                             |     |
|     |     |        | (                          |            |             |                   |             |                 |                             |     |
|     |     |        |                            |            | )           |                   |             |                 |                             |     |
|     |     | i      | Formula                    |            |             |                   |             |                 |                             |     |
|     | (b) | The bo | ox below show              | s the sy   | mbols and   | formulae fo       | or some ga  | ases.           |                             |     |
|     |     |        | CO2                        | 02         | He          | CH <sub>4</sub>   | Ne          | SO <sub>2</sub> |                             |     |
|     |     | Choos  | e from the box             | (          |             |                   |             |                 |                             |     |
|     |     | (i) t  | two elements,              |            |             | and               |             |                 |                             | [1] |
|     |     | (ii) 1 | t <mark>wo</mark> compound | is.        |             | and               |             |                 |                             | [1] |
|     | (c) | The ch | nemical formul             | a of nitri | c acid is H | NO <sub>3</sub> . |             |                 |                             |     |
|     |     | (i) S  | State how man              | y nitrog   | en atoms a  | are present       | in the forn | nula, HNC       | )3                          | [1] |
|     |     | (ii) ( | Give the total             | number     | of atoms s  | hown in the       | e formula.  |                 |                             | [1] |

| (d) | You  | may wish to refer to the table of common ions to help you answer parts (i) and (ii). |     |   |  |  |  |  |  |  |
|-----|------|--------------------------------------------------------------------------------------|-----|---|--|--|--|--|--|--|
|     | (i)  | Give the formulae of the ions present in the compound MgCl <sub>2</sub> .            | [1] |   |  |  |  |  |  |  |
|     |      | Positive ion Negative ion                                                            |     |   |  |  |  |  |  |  |
|     | (ii) | Give the chemical formula for sodium hydroxide.                                      | [1] |   |  |  |  |  |  |  |
|     |      |                                                                                      |     |   |  |  |  |  |  |  |
|     |      |                                                                                      |     |   |  |  |  |  |  |  |
|     |      |                                                                                      |     | 8 |  |  |  |  |  |  |