1. Some people have warts on their skin.

Warts can be removed by treating them with a corrosive solution of acids.

The acids in the medicine are weak acids.

Weak acids are safer to use on skin than strong acids because they are less corrosive.

(i) Which statements about weak and strong acids are true and which are false?
 Put a tick (✓) in one box in each row.

	True (🗸) False (🗸)
Both types of acids form water in neutralisation reactions.		
Weak acids have a slower rate of reaction with magnesium.		
Strong acids have a lower degree of ionisation than weak acids.		
	•	 [

(ii) Ellen uses the hydrogen ion concentration to estimate the pH values of acids.

Estimate the pH of 0.001 mol/dm 3 hydrochloric acid.

pH = _____

[2]

2. Rose is a laboratory technician.

She makes up a dilute solution of lime water (calcium hydroxide).

Rose makes 200 cm³ of 1.50 g/dm³ solution of calcium hydroxide.

(i) The formula for calcium hydroxide is Ca(OH)₂.
 Calculate the concentration of the solution in mol/dm³.

Give your answer to three significant figures.

concentration of solution _____ mol/dm³[3]

(ii) Lime water is used to remove sulfur dioxide from waste gases produced by industry.

The equation for this reaction is

$Ca(OH)_2(aq) + SO_2(g) \rightarrow CaSO_3(s) + H_2O(I)$

Calculate the volume of sulfur dioxide that Rose's lime water could remove.

(Assume that one mole of gas has a volume of 24 dm³ at room temperature and pressure)

Volume of sulfur dioxide _____ dm³[3]

3(a). Sam works in a lab that tests samples of vinegar to check their quality.

Vinegar is mainly a mixture of ethanoic acid and water. Vinegar needs to have a minimum of 5% acidity to be used to preserve food.

He uses a titration to find out how much 1 mol/dm³ sodium hydroxide he needs to add to exactly react with 25.0 cm³ of vinegar.

Calculate how much ethanoic acid needs to be in 25 cm³ of vinegar.

Use the equation:

% acidity = mass of ethanoic acid (g) x 100 mass of vinegar(g)

 1 cm^3 of vinegar = 1.01 g

amount of ethanoic _____g [2]

(b). The equation below shows ethanoic acid behaving as an acid.

 $CH_{3}COOH \rightleftharpoons CH_{3}COO^{-} + H^{+}$

Calculate the minimum volume of sodium hydroxide Sam uses in his titration.

Relative formula mass of $CH_3COOH = 60.0$

volume of sodium hydroxide _____ cm³ [3]

4(a). A scientist works in a quality control laboratory for a chemical company.

The company makes acids for use in cleaning products.

The scientist tests two acids, acid A and acid B.

He does a series of titrations for each acid.

He does a rough titration. He then repeats the titration three times taking more care.

These are his results.

Acid	Volume of sodium hydroxide solution used in cm ³				
	Rough Repeat 1 Repeat 2 Repeat 3				
A	25.0	24.5	24.4	24.6	
В	28.0	27.7	26.1	25.0	

(i) What is the range of volumes of sodium hydroxide used for the repeats for each acid?

range for acid A: from _____ to _____ cm³

- range for acid B: from _____ to _____ cm³
- (ii) The scientist looks at the ranges to decide whether he needs to do more repeats.

Do you think he needs to do more repeats for acid A?

Do you think he needs to do more repeats for acid B?

Explain your reasons.

acid A ______ acid B ______ [2]

[2]

(b). The scientist tests some samples of another four dilute acids, C, D, E and F.

He uses the same volume of dilute acid each time.

He measures the pH and does titrations using sodium hydroxide solution.

He uses the same concentration of sodium hydroxide solution in each titration.

His results are shown in the table below.

Acid	рН	Mean volume of sodium hydroxide solution used in titration (cm ³)
С	5	12.0
D	1	18.5
E	4	25.0
F	1	12.0

The scientist looks at his results.

He wants to know whether each acid is a strong acid or a weak acid.

He wants to compare the concentrations of the acids.

What conclusions can you make from the results about the **strength** and **concentration** of each of the four acids, **C**, **D**, **E** and **F**?

The quality of written communication will be assessed in your answer.

[6]	

- 5(a). Emma analyses an indigestion tablet to find the mass of magnesium hydroxide.
 - (i) Work out the relative formula mass (RFM) of magnesium hydroxide, Mg(OH)₂.

Show your working.

(Relative atomic masses: H = 1; Mg = 24; O = 16)

RFM of magnesium hydroxide = _____ [1]

(ii) Emma uses hydrochloric acid with 73.0 g of hydrogen chloride in each 1.0 dm³ of the acid solution.

It takes 15.1 cm³ of this hydrochloric acid to neutralise the tablet.

Work out the mass of hydrogen chloride in 15.1 cm³ of the hydrochloric acid.

Give your answer to the nearest 0.1 g.

Show your working.

mass of hydrogen chloride = _____ g [2]

(iii) Work out the mass of magnesium hydroxide in the tablet.

Use your answers to (i) and (ii) and this equation to help you.

 $Mg(OH)_2$ + $2HCl \rightarrow MgCl_2$ + $2H_2O$

Show your working.

mass of magnesium hydroxide in the tablet = _____ g [2]

(b). Emma works for a company making indigestion tablets.

Her job is to find the mass of magnesium hydroxide in tablets from each batch.

Emma titrates the magnesium hydroxide in each tablet with hydrochloric acid.

Mg(OH) ₂	+	2HC1	\rightarrow	MgCl ₂	+	2H ₂ O
magnesium		hydrochloric		magnesium		water
hydroxide		acid		chloride		

Emma analyses six tablets from each batch.

The table shows Emma's results for four batches of tablets.

	Mass of magnesium hydroxide in g					
Tablet number	1st	2nd	3rd	4th	5th	6th
Batch A	0.95	0.93	0.95	0.96	0.94	0.93
Batch B	0.88	0.86	0.89	0.87	0.89	0.87
Batch C	1.13	1.16	1.14	1.15	1.13	1.16
Batch D	1.03	1.13	1.05	1.04	1.15	1.03

The label on each pack of indigestion tablets says that each tablet contains 1.0 g of magnesium hydroxide.

The standard set by the company is that each tablet must be within 0.1 g of this figure.

For each batch decide whether it meets the standard and explain your answers.

_ [4]

6. Joe does an experiment to find out the **total mass** of dissolved solid in a sample of water from his local town.

He takes 50 cm³ of the water and evaporates it to leave a solid.

He stores the solid in a desiccator and finds its mass a few days later.

(i) Why is it important that he uses a desiccator?

Put ticks (\checkmark) in the boxes next to the **two** best answers.

to keep the solid dry	
to keep the solid warm	
to make sure that the mass reading is accurate	
to allow ions in the solid to separate	
to neutralise the solid	

[2]

(ii) The table shows Joe's results.

Volume of water in cm ³	Total mass of solid in g	
50	0.02	

Calculate the amount of solid in 1 dm^3 of water. Give your answer in g / dm³.

 $(1 \text{ dm}^3 = 1000 \text{ cm}^3)$

(iii) Use your answer to work out the number of milligrams (mg) of solid in 1 dm³ of water.

(1 g = 1000 mg)

_____ mg / dm³[1]

(iv) Joe uses the same technique to analyse a sample of water from London.

He finds that the sample contains 450 mg / dm³ of dissolved solid.

Joe's research found that London water contains 160 mg / dm³ of calcium ions.

Why are the two values different?

Put a tick (\checkmark) in the box next to the best answer.

Joe overheated the solid so that it decomposed.

The water contained ions other than calcium.

Joe used too small a volume of water in his experiment.

The relative atomic mass of calcium is higher than Joe realised.

[1]

7(a). Some students do titrations to find out the concentration of acid in vinegar.

The diagram shows the equipment they use.

Each student does a first titration then repeats the titration several times.

Each student calculates an average result from their repeats.

The first titration result is **not** used to calculate the average.

Which statement best explains why?

Put a tick (\checkmark) in the box next to the **best** answer.

The first result is usually lower than the others.

The first titration is done without an indicator.

The students do not follow the method carefully the first time.

The first result is used to give a rough idea of the volume needed.

(b). All students test vinegar from the same bottle and use the same concentration of sodium hydroxide.

The students record their average results in a table.

Name of student	Average volume of sodium hydroxide used in cm ³		
Amy	23.4		
Ben	24.1		
Carl	23.8		
Dee	18.2		

The students notice that Dee's result is very different from the others.

They suggest explanations for this.

Which student has the best explanation for Dee's result? Explain why you **agree** or **disagree** with the ideas suggested by each student.

Best explanation _____

[1]

_
_
-
_
-
1

8(a). James does a titration with an acid and an alkali.

He uses dilute sulfuric acid, sodium hydroxide solution and an indicator solution.

Describe and explain how James would carry out a set of titrations to get an accurate value for how much acid reacts with 25.0 cm^3 of the sodium hydroxide.

The quality of written communication will be assessed in your answer.
[6]

(b). The sodium hydroxide solution contains 40g/dm³ of sodium hydroxide. How much sodium hydroxide is in 25.0 cm³ of the solution?

answer _____ g [2]

(c). James gets these results.

titration number	1	2	3	4
volume of acid in cm ³	26.4	25.2	25.6	25.4

James decides that the best value for the volume of acid is 25.4 cm³.

Show how he arrived at this value.

______[2]

(d). The equation for this reaction is

$$\rm H_2SO_4 \ + 2NaOH \twoheadrightarrow Na_2SO_4 \ + 2H_2O$$

(i) The relative formula mass of sodium hydroxide is 40.Calculate the relative formula mass of sulfuric acid.Relative atomic masses are given in the Periodic Table on the back page.

answer _____ [1]

(ii) What mass of sulfuric acid reacts with 40g of sodium hydroxide? Show your working.

answer _____ g [2]

Mia does a titration.

She puts the sulfuric acid in a burette.

She measures out 25.0 cm³ of 0.100 mol / dm³ NaOH.

(i) She wants to measure the 25.0 cm³ of NaOH as accurately as possible.

Which piece of apparatus should Mia use?

Put a (ring) around the correct answer.

conical flask	100 cm ³ measuring cylinder	volumetric pipette	volumetric flask	
			[1	1]

(ii) Calculate the number of moles in 25.0 cm³ of 0.100 mol / dm³ NaOH.

Use the equation: concentration (mol / dm^3) = number of moles of solute \div volume (dm^3)

Number of moles =mol [3]

(iii) This is an equation for sulfuric acid reacting with NaOH.

 $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

Mia finds that 24.5 cm³ of H_2SO_4 reacts exactly with the NaOH.

Calculate the concentration of the sulfuric acid in the burette in mol / dm^3 .

Use the equation: concentration (mol / dm^3) = number of moles of solute \div volume (dm^3)

Give your answer to **2** significant figures.

Concentration =mol / dm³[3]

END OF QUESTION PAPER

Question		ו	Answer/Indicative content	Marks	Guidance
1		i	true (✓) false (✓) Both types of acids form water in neutralisation reactions. ✓ Weak acids are always less concentrated than strong acids. ✓ The same concentration of a weak and strong acid will have a different pH. ✓ Weak acids have a higher degree of ionisation than strong acids. ✓	3	All correct = (3) 2 or 3 correct = (2) 1 correct = (1)
		ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 3 award 2 marks $HC/ \rightarrow H^+ + C\Gamma$ $[H^+] = 0.001$ moles. = 1 × 10 ⁻³ molest \checkmark pH = 3 \checkmark	2	
			Total	5	
2		i	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 0.0202 award 3 marks calculates formula mass of $Ca(OH)_2 = 74.1$ (g) \checkmark 1.5 / 74.1 = 0.0202(42) \checkmark gives answer to 3 sig figs \checkmark	3	
		ii	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 0.09696 award 3 marks $200 \text{ cm}^3 = 0.2 \text{ dm}^3 \checkmark$ $0.0202 \text{ x} 0.2 = 0.00404 \checkmark$ volume of SO ₂ (1:1 ratio) = 0.00404 x 24 = 0.09696 (dm ³) \checkmark	3	ALLOW answers to significant figures or more correctly rounded ALLOW 0.0971(65) calculator value carried forward from 12(b)(i) ECF
			Total	6	

Question		n	Answer/Indicative content	Marks	Guidance
3	а		FIRST CHECK ANSWER ON ANSWER LINE if answer = 1.2625 g award 2 marks mass of vinegar in 25 cm ³ = 25 × 1.01 g = 25.25 \checkmark mass of ethanoic acid = 5×25.25 100 = 1.2625 (g) \checkmark	2	ALLOW answer of 1.26 to 1.3 (g)
	b		FIRST CHECK ANSWER ON ANSWER LINE if answer = 21 cm ³ award 3 marks number of moles of ethanoic acid in 25.0 cm ³ = $\frac{1.2625}{60} = 0.021 \checkmark$ $\frac{1.2625}{60} = 0.021 \checkmark$	3	ALLOW ECF from 15(a)
			Total	5	

Question		n	Answer/Indicative content	Marks	Guidance
4	а	i	24.4-24.6; (1)	2	Accept: 24.6-24.4;
			25.0-27.7; (1)		Accept: 27.7-25.0;
					Accept 25 instead of 25.0
					Examiner's Comments
					Almost all candidates successfully identified the two ranges, with the most common mistake being to include the values for the rough reading in their range. In this case, examiners allowed answers such as '25' instead of '25.0', though that will not always be the case in future. Candidates also showed an excellent ability to decide and explain whether more readings should be taken.
		ï	Acid A no more repeats AND acid B needs more repeats; (1)	2	Allow Acid A 'No' AND Acid B 'Yes' for 1 mark
			Acid B range is large / results are not concordant / not consistent / not repeatable / results vary OR Acid A results are close together / AW ; (1)		Accept "Acid B results not accurate" Ignore "Acid B results contain outliers" Ignore "because of the range"

Question	Answer/Indicative content	Marks	Guidance
b	[Level 3] Both strength and concentration correct for most of the acids. Quality of written communication does not impede communication of the science at this level. (5 – 6 marks) [Level 2] Both strength and concentration correct for some of the acids. OR Makes correct statements about concentration for most acids or strength for most acids. Quality of written communication partly impedes communication of the science at this level. (3 – 4 marks) [Level 1] Makes correct statements about concentration OR strength for some acids; Quality of written communication impedes communication of the science at this level. (1 – 2 marks) [Level 0] Insufficient or irrelevant science. Answer not worthy of credit. (0 marks)	6	 This question is targeted at grades up to A* Indicative scientific points may include: Level 3 indicative points Acid C is a weak acid AND has a low concentration. Acid D is a strong acid and more concentrated than C Acid E is a weak acid and high in concentration Acid F is a strong acid AND has a low concentration. Accept comments about dibasic acids Concentration Acid C and acid F have the lowest concentration. Acid C and acid F have the lowest concentration. Acid C and acid F have the same concentration. Acid C and acid F have the same concentration Acid D is more concentrated than C or F Acid D is less concentrated than acid E Strength Acid D is a strong acid Acid C is a weak acid Acid D and F are the strongest acids Acid D and F are the strongest acids Acid E is stronger than acid C Statements such as "Acid C&F have <i>lowest</i> concentration" OR "Acid D and F are the <i>strongest</i> acids" qualify as statements about MOST of the acids. If reasoning faulty, give the lower mark of the level Use the L1, L2, L3 annotations in RM Assessor; do not use ticks. Examiner's Comments

Question	Answer/Indicative content	Marks	Guidance
			The most able candidates showed an easy understanding of the relationship between acid strength and pH, and of concentration and the amount of sodium hydroxide used in a titration. Others had great difficulty in coping with the idea that an acid could be both strong and dilute, or weak and concentrated, and tried to combine them in some way. Answers such as "D and F are both strong acids because they have a pH of 1, but D is the stronger of the two because it uses more sodium hydroxide" were not uncommon. This question also exposed other misunderstandings. Many candidates suggested that the smaller the amount of alkali used, the <i>more</i> concentrated the acid would be. Also, and unsurprisingly, many felt that low pH numbers indicated weak acidity. In several cases examiners suspected that candidates understood the material, but that the candidates' expression was ambiguous to the point where examiners were not able to award the mark with confidence. This question asked candidates to differentiate between two very specific terms: acid strength and acid concentration. This meant that examiners had to focus carefully on the precise words that candidates used. A lack of precision in answering let some candidates down here, since very general statements such as "it was the most/least acidic' were inadequate in this context – and had to be innored
	Total	10	

Question		n	Answer/Indicative content	Marks	Guidance
5	а	i	58	1	Examiner's Comments The calculation in (i) was performed correctly by most candidates. 24 + ([16 + 1] x 2) = 58 A common incorrect answer was 56.
		ii	0.0151 x 73.0 (1) = 1.1 (1)	2	 allow both marks for correct answer without working ignore additional figures after sig fig if they would round down to 1.1 Examiner's Comments In (i) only the stronger candidates calculated the mass of hydrogen chloride correctly. 0.0151 x 73.0 = 1.1 g It was clear from the jumble of figures many candidates wrote that they had little idea of how to approach this calculation.
			58 x 1.1/73 (1) = 0.87 (1)	2	 allow ecf from (i) and (ii) ie (i) x (ii) / 73 allow both marks for correct answer without working allow 0.9 Examiner's Comments Only a few of the strongest candidates performed the calculation in (iii) correctly, even allowing for the carrying forward of errors from the previous two parts. 58 x 1.1/73 = 0.87 g Most candidates had little idea of where to begin.

Qı	Question		Answer/Indicative content	Marks	Guidance
	b		batch A is OK because each tablet is within the allowed range (1)	4	each answer must say indicate whether the batch is satisfactory or unsatisfactory and explain why
			batch B is unsatisfactory because the tablets contain less (than the minimum permitted amount) (1)		do not credit calculation and use of average / mean values
			hatch C is unsatisfactory because the		Examiner's Comments
			tablets contain more (than the maximum permitted amount) (1) batch D is unsatisfactory because some		This question differentiated well across the ability range. Many candidates realised that batch A meets the standard and could explain why. For batches B, C and D a lack
			tablets contain more (than the maximum permitted amount) (1)		of detail in the explanation of why these did not meet the standard cost marks for many candidates. A large number of candidates calculated the average mass for each batch and used this as a basis for deciding each batch met the standard. They did not appreciate the idea that every tablet in a
					batch had to meet the standard, despite this having been pointed out in the stem.
			Total	9	

Question			Answer/Indicative content	Marks	Guidance
6	i		to keep the solid dry (1) to make sure that the mass reading is accurate (1)	2	Examiner's Comments Almost all candidates knew at least one reason for the use of a desiccator. Over half selected both correct answers.
	ii	i	correct answer = 0.4 g / dm ³ (2) <i>If answer is not fully correct allow (1) mark</i> <i>for:</i> converts volume to dm ³ (50 ÷ 1000) (=0.05 dm ³) OR gives answer 0.0004 g / dm ³	2	Examiner's Comments About half of the candidates gained both marks for calculating the mass of solid. The most common errors were involved in the conversion of the volume. Many candidates were not sure whether to multiply or divide by 1000.
	ii	ii	400	1	Allow ECF answer to (ii) × 1000 Examiner's Comments This question was a developed quantitative task, in which the answer to 4bii was needed to calculate the answer to 4biii. About half of the candidates gained the available mark. Where the answer to the first part was incorrect, 'error carried forward' was allowed to ensure that there was no barrier to scoring in the second part.
	iv	v	the water contained ions other than calcium	1	Examiner's Comments Most candidates correctly concluded that there must be other ions in the water.
			Total	6	

Qı	uestion	Answer/Indicative content	Marks	Guidance
7	a	The first result is usually lower than the others. The first titration is done without an indicator. The students do not follow the method carefully the first time. The first result is used to give a rough idea of the volume needed.	1	Examiner's Comments Almost every candidate knew that the first titration result is used as a 'rough'.
	b	 Any 3 from (Dee's result) is too low / lower than the others; Amy (going past the end point would make) volume of sodium hydroxide higher / volume would be 'too high'; Ben (If the vinegar was more concentrated) more sodium hydroxide would be needed / volume would be 'too high' / all from the same bottle / same vinegar / same concentration; Carl Must have measured out too little vinegar at the start / AW; 	3	no marks for 'Carl' alone all marks are for explanations Maximum 2 marks can be scored if Carl is not given as answer ignore 'Dee's result is very different / it is an outlier' ignore 'made mistakes when she measured the volume' Examiner's Comments This was another question that asked candidates to process provided information. An even spread of scores from 0 to 3 were seen. Better answers addressed the question fully by referring to the different ideas of each person. Some answers only addressed some of the ideas and so limited the possible marks that could be scored.
		Total	4	

Que	stion	Answer/Indicative content	Marks	Guidance
8 a	3	[Level 3] Gives most of the essential stages in the method AND makes a statement about accuracy AND makes a statement about repeating. Quality of written communication does not	6	This question is targeted at grades up to B Indicative scientific points may include: Method - Essential stages [cued in stem] • alkali [solution] in flask / beaker
		impede communication of the science at this level. (5 – 6 marks)		 indicator into alkali add acid / acid in burette [sudden] indicator / colour change
		[Level 2] Gives most of the essential stages in the		Method - Other points
		method AND makes a statement about accuracy OR makes a statement about repeating.		 read the burette swirl stop adding acid [at endpoint]
		Quality of written communication partly impedes communication of the science at this level.		Accuracy
		(3 – 4 marks) [Level 1] Makes points about the titration.		 [measure alkali using] pipette Run acid through tap [to flush out air] drop by drop / slowly meniscus
		Quality of written communication impedes communication of the science at this level. (1 – 2 marks)		 look for similar results / concordant Repeating
		[Level 0] Insufficient or irrelevant science. Answer not worthy of credit.		repeat;rough;
		(0 marks)		A level 1 method may include any statements from the method lists. Incorrect statements limit the mark to the lower mark of the level at levels 2 & 3 e.g. "indicator goes clear" [rather than colourless]
				If they make up the alkali solution from solid, ignore the whole of that section, until the titration begins. Consider this to impede QWC at level 3. N.B. The alkali must then be transferred to a flask / beaker to gain credit for the first
				point in the essential stages. Use the L1, L2, L3 annotations in Scoris; do not use ticks.
				Examiner's Comments
				Most candidates were clearly familiar with the procedure for carrying out a titration,

Qu	Question		Answer/Indicative content	Marks	Guidance
					but there was also a significant minority who appeared to have little or no practical experience. There was a surprising number of descriptions of a burette as a "titration stick" or "titration tube"
	b		1g [2] Either 40x25.0 or divides by 1000 [1]	2	Examiner's Comments Able candidates had no difficulty calculating the mass of sodium hydroxide in the solution, though others found it more taxing. Few candidates showed their working, so were not even able to gain that mark. This part was not attempted by a minority of candidates.
	C		Any two from He calculated a mean; ignored 26.4; it is an outlier / rough result;	2	Ignore It is the middle of the other two values Ignore take the median 25.2 + 25.6 + 25.4 [=76.2] divided by 3 (2) Examiner's Comments Most candidates realised that the first result was an outlier and that the best value was the mean of the other three results. Some candidates showed confusion between mean and median. Also common was "after discarding the first reading, 25.4 is in the middle of the other three".
	d	i	98	1	Enter text here.
		ii	49g [2] 98/2 [1]	2	ECF on di ie half the answer to di [2] Recognises that the reacting ratio is 1:2 eg 196g or di) x 2 [1] Examiner's Comments While calculating the relative formula mass was within the reach of most candidates, using the equation to decide what mass of acid reacts with 40g of sodium hydroxide was a lot more difficult and was not attempted by a significant minority.

Question			Answer/Indicative content	Marks	Guidance
			Total	13	

ididates do this and /er units of

Question		n	Answer/Indicative content	Marks	Guidance
		iii	FIRST CHECK ANSWER ON ANSWER LINE If answer = 0.051 (mol / dm ³) award 3 marks moles H_2SO_4 = ANS (ii)/2 / 0.0025 / 2 (= 0.00125) \checkmark	3 (AO 3 × 2.2)	ALLOW ECF (including from part (ii))
			conc $H_2SO_4 = 0.00125 (ECF) / 0.0245 \checkmark$		0.102 = (1) for MP2
			conc H_2SO_4 =0.051 (mol / dm ³) \checkmark		ALLOW answer with working to 2 sig figures
					Examiner's Comments
					Although an equation was given, this calculation was nevertheless very challenging for all but the higher ability of candidates. Candidates needed to use their values from a previous calculation and to remember to both use the reacting ratio in the question, manage the volume unit conversion and to round their answers to two significant figures. Most earned some partial credit for managing at least one stage correctly. Again there was a low omit rate for this difficult question. Copyright
			Total	7	