1(a). Kay is a geologist. She takes samples of minerals from a range of rocks.

She tests their melting points and electrical conductivity so that she can work out the bonding and structure of each mineral.

The table shows her results.

| Mineral | Melting point in<br>°C | Electrical<br>conductivity of<br>solid | Electrical<br>conductivity<br>when molten | Electrical<br>conductivity<br>when dissolved<br>in water |
|---------|------------------------|----------------------------------------|-------------------------------------------|----------------------------------------------------------|
| A       | 1083                   | good                                   | good                                      | insoluble                                                |
| В       | 1600                   | does not<br>conduct                    | does not<br>conduct                       | insoluble                                                |
| С       | 801                    | does not<br>conduct                    | good                                      | good                                                     |
| D       | 373                    | does not<br>conduct                    | good                                      | insoluble                                                |

Kay thinks minerals C and D are both ionic compounds with a giant structure.

Explain why Kay thinks this.

| <br>           |
|----------------|
|                |
|                |
| <br>           |
| [0]            |
| <br><u> </u> _ |
|                |

(b). Compare minerals A and B. What type of structure and bonding do minerals A and B have?

Explain your answer.

[4]

Explain how the atoms are held together in a metal.

Refer to this diagram in your answer.



## END OF QUESTION PAPER

## **Mark Scheme**

| Question |   | n Answer/Indicative content                                                                                                                                                                                                                                                                          | Marks | Guidance |
|----------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------|
| 1        | а | do not conduct when solid but do when<br>molten so ionic ✓<br>have a high melting point so giant structure<br>✓                                                                                                                                                                                      | 2     |          |
|          | b | <ul> <li>both have giant structures as both have high melting points ✓</li> <li>A conducts electricity when solid or molter B does not conduct electricity ✓</li> <li>therefore</li> <li>A is a metal with a giant structure ✓</li> <li>B is a covalent compound with a giant structure ✓</li> </ul> | , 4   |          |
|          |   | Total                                                                                                                                                                                                                                                                                                | 6     |          |

## **Mark Scheme**

| Question      | Answer/Indicative content                                                                                                                                                                             | Marks                      | Guidance                                                                                                                                                                                                                                                                                                                                                           |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question<br>2 | Answer/Indicative content         strong forces/bonds/attraction /         electrostatic attractions between ✓         (free/delocalised/sea of) electrons ✓         and positive ions (from metal) ✓ | Marks<br>3 (AO 3 ×<br>1.1) | Guidance DO NOT ALLOW intermolecular forces IGNORE metal atoms DO NOT ALLOW protons/nuclei Examiner's Comments Most candidates correctly identified the negative particles as electrons. Some thought that they were negative ions. Misconceptior A very common                                                                                                    |
|               |                                                                                                                                                                                                       |                            | misconception is that the<br>'+' particles in a metal<br>structure are positive<br>protons. Furthermore,<br>there is confusion (which<br>also occurs in later<br>questions about ionic and<br>covalent bonding) about<br>the various types of<br>bonds. 'Intermolecular<br>forces' is a term often<br>used for any type of<br>force, even for those in a<br>metal. |
|               |                                                                                                                                                                                                       |                            | Exemplar 4<br>Because the protons are attracted to                                                                                                                                                                                                                                                                                                                 |
|               |                                                                                                                                                                                                       |                            | the electron so are bound together<br>by force.                                                                                                                                                                                                                                                                                                                    |
|               |                                                                                                                                                                                                       |                            | This answer does show correct<br>identification of the negative charges in the<br>diagram (electrons) for one mark.<br>However, the candidate believes the<br>positive charges to be protons, so the<br>description given is that of an atom rather<br>than a metal structure, so only one mark<br>credited.                                                       |
|               | Total                                                                                                                                                                                                 | 3                          |                                                                                                                                                                                                                                                                                                                                                                    |