Mark scheme – Organic Chemistry (H)

Question		Answer/Indicative content	Marks	Guidance
1		D√	1 (AO1.1)	
		Total	1	
2		В√	1 (AO2.2)	
		Total	1	
3		В√	1 (AO1.1)	
		Total	1	
4		A√	1 (AO1.1)	
		Total	1	
5		В√	1 (AO1.1)	
		Total	1	
6		D√	1 (AO2.1)	
		Total	1	
7		c√	1(AO 1.1)	Examiner's Comments Candidates found this question challenging but there was no pattern of incorrect responses.
		Total	1	
8		A √	1(AO 1.1)	Examiner's Comments Misconception B and D were both common misconceptions in this question.
		Total	1	
9		C√	1(AO 1.1)	

			Total	1	
10			с√	1(AO 1.1)	Examiner's Comments Misconception A and B were both common misconceptions in this question.
			Total	1	
11	а	i	A and D \checkmark	1 (AO2.1)	Both required for the mark
		ii	Any two from: Have the same general formula / both have the formula C _n H _{2n+2} √ Idea that they differ from each other by CH ₂ √ Both hydrocarbons with only single bonds / both saturated hydrocarbons √	2 (AO1.1)	ALLOW have similar chemical properties ALLOW show trends in physical properties ALLOW both hydrocarbons with no double bonds ALLOW A and D have the same functional group or no functional group / B and C have different functional groups (from A and D) ALLOW both (A and D) are alkanes / C is an alkene and B is a carboxylic acid
	b	i	$ \begin{array}{c} H & H \\ + C & - C \\ H & CH_{3} \end{array} $ Correct structure \checkmark Brackets and 'n' \checkmark	2 (AO2.1)	ALLOW structure of -CH ₃ group shown ALLOW round or square brackets Second marking point is dependent on correct structure
		ii	 Any one from: Idea that in addition polymerisation monomers react together to form one large molecule / polymer whereas in condensation polymerisation one large molecule and a smaller molecule is formed √ A monomer (molecule) for addition polymerisation has one functional group 	1 (AO1.1)	ALLOW condensation polymerisation produces water (whereas addition polymerisation does not) ALLOW idea that addition polymerisation makes one product (whereas condensation polymerisation makes two products) / ORA ALLOW addition polymerisation requires (a monomer) with a C=C, but condensation

	 Whereas a monomer (molecule) for condensation polymerisation requires two different functional groups √ Addition polymerisation requires a catalyst (whereas condensation polymerisation can happen without a catalyst) / ORA √ Addition polymerisation requires high temperature (whereas condensation polymerisation can happen at room temperature) / ORA √ 		a-COOH group
	Addition polymerisation requires high pressure (whereas condensation polymerisation can happen at atmospheric pressure) / ORA √		
	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Describes tests, the results, and identifies each of the three samples AND Includes correct balanced symbol equations for the reactions which occur.		 AO1 Knowledge and understanding of alkanes, alkenes and acids Alkanes do not react with bromine water Alkenes react with bromine water / bromine water is decolourised Acids react with carbonates to give off carbon dioxide / fizzing observed
	There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.	6 (AO3 ×	 Add sodium carbonate (or any suitable carbonate) Ethanoic acid effervesces
c	Level 2 (3–4 marks) Describes tests, the results, and identifies each of the three samples OR Describes a test and the result, to identify one of the three samples and attempts to identify the other two AND Includes a balanced symbol equation for the reaction which occurs. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.	1.2) (AO3 × 2.2)	 Pentane and pentene do not effervesce ALLOW other suitable reactions, eg addition of a metal; ethanoic acid effervesces ALLOW use of universal indicator to identify ethanoic acid Add bromine water to separate samples of pentane and pentene and shake With pentene bromine water changes from orange to colourless / bromine water is decolourised With pentane and ethanoic acid bromine water stays orange
	Describes a test and the result, to identify		understanding to produce balanced

			one of the three samples. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks		symbol equations $2CH_3COOH + Na_2CO_3 \rightarrow 2CH_3COONa + CO_2 + H_2O$ $C_5H_{10} + Br_2 \rightarrow C_5H_{10}Br_2$
			No response or no response worthy of credit.		
			Total	11	
12	а	i	4 / four √	1(AO 1.1)	<u>Examiner's Comments</u> Two and three were common errors in this question.
		ii	Amino acids √	1(AO 1.1)	Examiner's Comments Most candidates knew that the monomers in proteins are amino acids.
	b	i	Carboxylic acids √	1(AO 1.1)	IGNORE carboxyl group <u>Examiner's Comments</u> Alkanes, amines and esters were common errors in this question.
		ii	Alcohol X $H H H H H H H + -C - C - C - O - H + H H H + - \checkmark$ Compound Y $H - C - C - C - C + - O + + H + H + O + H + - \checkmark$	2(AO 2.1)	ALL covalent bonds must be shown in both displayed formulae BUT ALLOW 1 mark if both displayed formulae are correct, but show '-OH' without covalent bond Examiner's Comments More candidates were able to correctly draw the structure of alcohol X than compound Y. Many candidates did not gain the mark for the displayed formula of the alcohol because they lacked the O-H bond. The question stated 'show all the covalent bonds'. Lower ability candidates did not recall the carboxylic acid functional group, - COOH. Often the diagrams had two C-O
					bonds drawn (the oxygens had no other bonds). Other diagrams included C=OH or more than one C=O within the structure.
	с		Type of polymerisation – condensation (polymerisation) \checkmark	4(AO1 × 1.1)	
			Correct choice of ethane-1,2-diol and	(AO1 ×	

6.2 Organic Chemistry (H)

	ethanedioic acid \checkmark Equation: $H_{0} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} - \end{matrix} - \end{matrix} - \end{matrix} - \begin{matrix} H \\ - \end{matrix} -$	3.1a)	ALLOW mark for correct choice of monomers from correct reactant structures in an equation
	Correct ester (link) formed √ Water molecule eliminated √	(AO2 × 2.1)	
			ALLOW mark for 'water' from an equation, even if incorrect Examiner's Comments Good responses to this question described the reaction of ethanedioic acid with ethane- 1,2-diol in a condensation polymerisation reaction to form an ester and water. Many candidates gained 3 marks, but the fourth mark for drawing the correct ester link was less frequently given. Choosing ethene as one of the monomers was a common error.
d	Idea of swapping the position of boiling tube X and the boiling tube of limewater √ Idea that any liquid that condenses in boiling tube X must have come from the burning methane or not from the limewater √	2(AO 3.3b)	ALLOW idea that water condenses before the limewater is reached ALLOW idea of carrying out 2 experiments, one to test for carbon dioxide and one to test for water for 2 marks Examiner's Comments Higher ability candidates suggested swapping the position of boiling tube X and the boiling tube of limewater to make sure that any liquid that condenses in boiling tube X must have come from the burning methane and not from the limewater. Lower ability candidates misunderstood the question and focused on testing the condensed liquid to prove that it was water. Another common misconception was to suggest that the experiment needed to be a closed system to prevent water vapour / oxygen/carbon dioxide from the air affecting the results.

			Total	11	
13			(Condensation) polymer √	1(AO 1.1)	ALLOW polyamide / polypeptide DO NOT ALLOW addition polymer DO NOT ALLOW chain Examiner's Comments Many candidates correctly stated that Kevlar® is a polymer or polyamide. Polyester, alcohol and alkene were common incorrect responses. Misconception Addition polymer was a common misconception
			Total	1	
14			С	1	
			Total	1	
15			D	1	
			Total	1	
16			В	1	
			Total	1	
17			С	1	
			Total	1	
18			С	1	
			Total	1	
	а		Fractions have different boiling points (1)		Answer must be comparative ALLOW ORA
19			Idea that larger molecules have stronger intermolecular forces (1)	2	
					ALLOW has C=C
	b		Has a carbon-carbon double bond (1)	1	ALLOW answer indicated on the displayed formula
					Has a double bond is not sufficient
			Total	3	