1 This question is about some of the hydrocarbons found in crude oil. The table shows some information about four of these hydrocarbons. | Hydrocarbon | Molecular
formula | Fraction of crude oil that contains the hydrocarbon | Melting point
in °C | Boiling point
in °C | Density
in g/cm ³ | |-------------|---------------------------------|---|------------------------|------------------------|---------------------------------| | propane | C ₃ H ₈ | liquefied petroleum gases | -188 | -42 | 0.002 | | hexane | C ₆ H ₁₄ | petrol | - 95 | 68 | 0.66 | | decane | C ₁₀ H ₂₂ | paraffin | -30 | 174 | 0.73 | | hexadecane | C ₁₆ H ₃₄ | diesel | 18 | 287 | 0.77 | | (a) | Propane is a hydrocarbon . | |-----|---| | | What is meant by a hydrocarbon? | | | | | | | | | [2 | | (b) | Propane is a saturated compound. | | | What is meant by a saturated compound? | | | | | | [1 | | (c) | A mixture of hexane, decane and hexadecane can be separated by fractional distillation. | | | Explain why. Use ideas about intermolecular forces and information from the table. | | | | | | | | | | | | | | | [3 | | (d) | Hexane is one of the hydrocarbons found in petrol. | | | | |-----|--|-----|--|--| | | Hexane completely burns in excess air. | | | | | | Look at the symbol equation for this reaction. | | | | | | Balance the equation by putting numbers in the boxes. | | | | | | | [2] | | | | (e) | Hexane burns in a limited supply of oxygen. | | | | | | Incomplete combustion happens. | | | | | | Write a word equation for the incomplete combustion of hexane. | | | | | | | | | | 2 Stowmarket Synthetics is a chemical company that makes polymers. They make a polymer from a monomer called propenenitrile. Look at the displayed formula for the monomer propenenitrile. $$C = C$$ (a) How many covalent bonds are shown in the displayed formula of propenenitrile? Tick (✓) the correct box. | three | | |-------|--| | four | | | five | | | eight | | | nine | | [1] (b) Stowmarket Synthetics also make a polymer that is used to make bottles for fizzy drinks. The polymer they use has a low melting point. Suggest, with reasons, **two other** properties of the polymer that make it suitable for use as a bottle for fizzy drinks. Use a simple model of the structure of the polymer to explain why it has a low melting point. | The quality of written communication will be assessed in your answer to this question | |---| | | | | | | | | | | | | |
re | 3 Fuel cells are used to make electricity. Look at the diagram. It shows what happens in a fuel cell. (a) In this fuel cell, hydrogen, H_2 , reacts with oxygen, O_2 . Water, H₂O, is made. Write a **balanced symbol** equation for this reaction.[2] **(b)** The reaction between hydrogen and oxygen is **exothermic**. Draw and label an energy level diagram for the reaction between hydrogen and oxygen progress of the reaction | (c) | Fuel cells are used to provide electrical energy in spacecraft. | |-----|---| | | Write down one other advantage of using fuel cells in spacecraft. | | | | | | [1] | | (d) | Hydrogen-oxygen fuel cells produce water. | | | Water is not a pollutant. | | | Fuel cells still cause pollution. | | | Write down two ways that fuel cells can cause pollution. | | | 1 | | | | | | 2 | | | [2] | 4 Look at the diagrams. They show the displayed formulas of some fats and oils. Formula A Formula **B** Formula **C** (b) (a) Which formula is unsaturated? | Explain your answer. | |--| | | | [2] | | Fats and oils can be split up by saponification . | | Explain what happens during saponification. | | | | | | | | | | (c) | Look at the diagram of a detergent molecule. | |-----|---| | | hydrophilic head | | | Explain, using its structure, how a detergent molecule removes fat and oil stains from clothes. | This question is about compounds containing carbon. Look **5** at the displayed formulas of some compounds. | | C=C
H H | H — Ç — Ç — H | H — C — C — O — H | | | | |-----|---|--|----------------------------------|----------|--|--| | | Й
Н Н | нн | H-C-C-O-H
 | | | | | | compound A | compound B | compound C | | | | | | | | | | | | | | H | 0 | H H H | | | | | | Н —Ċ—Н
_! | H—C—O—H | C=C-C-H | | | | | | Н | | н н | | | | | | compound D | compound E | compound F | | | | | (a) | What is the molecular formula for compound B? | | | | | | | | | | | [1] | | | | (b) | Explain why compoun | nd B is a hydrocarbon but compoun | d C is not a hydrocarbon. | [2] | | | | , , | | | | [3] | | | | (C) | Two compounds are unsaturated . | | | | | | | | Which two? | | | | | | | | and | | | [1] | | | | | | | [T/ | otal: 5] | | | | wer station burns methane | e, CH ₄ . | | | | | |---|--|--|--|--|------------------------------| | Construct a balanced symbol equation for the complete combustion of methane. | | | | | | | | | | | | | | The power station produces nitrogen dioxide gas. The owners need to stop the nitrogen dioxide going into the atmosphere. | | | | | | | | | | | | They can choose two methods: | | use limestone | | | | | | | use sea water. | | | | | | | Look at the table. It shows | some information about eac | h method. | | | | | | Limestone | Sea water | | | | | Percentage of nitrogen dioxide removed | 90% | 99% | | | | | Waste made | carbon dioxide and a solid waste product | none – sea water is
pumped back into the sea | | | | | Cost | expensive | cheap | | | | | | | must be pumped in from the coast | | | | | Mass needed to remove 1 g of nitrogen dioxide | 1.2g | 3000 g | | | | | The power station is 100 k | ilometres from the coast. | | | | | | The power station makes | 9000g of nitrogen dioxide. | | | | | | Which method would be m | nore suitable for removing nit | rogen dioxide from the wast | | | | | Explain your answer. | g | . • 9 • • • • • • • • • • • • • • • • • • • | | | | | Explain your answer. | 6 **7** Poly(propene) is a polymer made from propene. Look at the displayed formula for propene. (a) Draw the displayed formula for poly(propene). **(b)** Poly(propene) is used to make sandwich boxes. Look at Anna's sandwich box. It contains the sandwiches for her lunch. One of the properties of poly(propene) is that it is flexible. Explain **why** poly(propene) is flexible and suggest, with reasons, two **other** properties needed by poly(propene) to be suitable for making a sandwich box. | The quality of written communication will be assessed in your answer to this question | |---| [Total: 8] | The | ere are many compound | s that contain | carbon and h | ydrogen only. | | | | |-----|---|-------------------------------|-------------------------------|-------------------------------|--|-----|--| | (a) | Pentane has the formula $\mathrm{CH_3}(\mathrm{CH_2})_3\mathrm{CH_3}$. | | | | | | | | | Calculate the molar mass of pentane. | | | | | | | | | The relative atomic mass, A_r , of H = 1 and of C = 12. | molar mass = | g/mc | ol . | | | [1] | | | (b) | Look at the displayed for | ormula for but | yne. | | | | | | | | | | | | | | | | H—C≡C—C—H | | | | | | | | | | H—C= | =C—C—C | —н | | | | | | н н | | | | | | | | | What is the molecular formula for butyne? | | | | | | | | | | | | | | [1] | | | (c) | Look at the molecular f | ormula of son | ne compounds | S. | | | | | | Which two compounds | have the san | ne empirical f | formula? | | | | | | Choose from | | | | | | | | | | CH ₄ | C_2H_2 | C ₂ H ₄ | | | | | | | C ₂ H ₆ | C ₃ H ₄ | С _е Н _е | | | | | | | 2 0 | . . | 0 0 | | | | | | answer | and | | | | [1] | | | | | | | | | | | 8 | | | [Total: 5] | |-----|---|------------| | | empirical formula is | [2] | Calculate the empirical formula for this gas. | | | | He finds it contains 1.2 g of carbon and 0.4 g of hydrogen. | | | (d) | David analyses a sample of a gas. | | **9** Ethanol can be made by the fermentation of glucose. Tina and Tommy investigate the fermentation of glucose. They use 50 cm³ of glucose solution and 1 g of yeast. Tina and Tommy measure the volume of carbon dioxide made after 10 minutes. They do the experiment at different temperatures. Look at the graph. It shows their results. | | (i) | What is the volum | ne of carbon dioxide | made at 60°C? | |-----------|---------|-----------------------------|---|--| | | | answer | cm ³ | | | | (ii) | At what temperate | ure is the reaction fa | stest? | | | | answer | °C | | | | | Explain your ansv | ver. | | | | | | | | | | | | | | | b) | Glu | cose reacts to mak | ke carbon dioxide and | d ethanol. | | | Loc | ok at the formulas. | | | | | | | Substance | Formula | | | | | Substance | Formula | | | | | alucose | C.HO. | | | | | glucose carbon dioxide | C ₆ H ₁₂ O ₆ | | | | | | $C_6H_{12}O_6$ CO_2 C_2H_5OH | | | | | carbon dioxide ethanol | CO ₂
C ₂ H ₅ OH | | | Wri | ite down the balan d | carbon dioxide | CO ₂
C ₂ H ₅ OH | | | | | carbon dioxide ethanol ced symbol equation | ${\rm CO_2}$ ${\rm C_2H_5OH}$ n for this reaction | | ;) | | | carbon dioxide ethanol ced symbol equation or an alcohol is | CO ₂ C ₂ H ₅ OH In for this reaction | | :) | | | carbon dioxide ethanol ced symbol equation | CO ₂ C ₂ H ₅ OH In for this reaction | | =) | The | | carbon dioxide ethanol ethano | CO ₂ C ₂ H ₅ OH In for this reaction | | c) | The | e general formula fo | carbon dioxide ethanol ced symbol equation or an alcohol is C_nH_{2n} ee carbon atoms. | CO ₂ C ₂ H ₅ OH In for this reaction | [1]