1 This question is about fertilisers. Farmers use fertilisers to make crops grow bigger and faster. This increases crop yield. | (a) | Explain how the use of fertilisers increases crop yield. | | |-----|---|-----| | | | | | | | | | | | [2] | | (b) | Ammonium phosphate, $(NH_4)_3PO_4$, is used as a fertiliser. | | | | Write down the total number of atoms in the formula $(NH_4)_3PO_4$. | | | | answer | [1] | (c) Chloe makes some potassium nitrate by neutralising an alkali with nitric acid. Look at the diagram. It shows the apparatus she uses. | (i) | Write down the name of the alkali Chloe uses to make potassium nitrate. | | |------|---|------------| | | | [1] | | (ii) | Chloe adds nitric acid to the flask until the solution is neutral . | | | | Explain, using the ions involved, why the alkali is neutralised by nitric acid. | | | | | | | | | [1] | | | | [Total: 5] | 2 Fertilisers and medicines are useful chemicals. Ammonium sulfate is used as a fertiliser. Ammonium sulfate is made by reacting ammonia with dilute sulfuric acid. The ammonia needed for this reaction is made in a **continuous** process. This is different to the **batch** process used to make most medicines. | (a) | (i) | A continuous process is used to make ammonia but a batch process is used to make most medicines. | |------|------|--| | | | Explain why. | | | | | | | | | | | | [2] | | | (ii) | It is more expensive to make medicines than it is to make ammonium sulfate fertiliser. | | | | Suggest why. | | | | | | | | [1] | | (b) | Alex | makes some ammonium sulfate in a laboratory. | | | (i) | Alex predicts he should make 8.0 g of ammonium sulfate. | | | | He actually makes 6.0 g. | | | | Show, by calculation, that his percentage yield of ammonium sulfate is 75%. | | | | | | | | | | hvsi | csAn | dMathsTutor.com | | | [Total: 7] | |------|--| | | [2] | | | | | | | | | | | | Explain why. | | (ii) | The companies who make ammonium sulfate fertiliser on an industrial scale want as high a percentage yield as possible. | 3 Look at the diagram. It shows how ammonia is made in the Haber process. (a) Unreacted nitrogen and hydrogen are recycled. | _ | | _ | |---------|------|------| | ۳.// | مندا | why. | | m x () | ını | WHIV | | | | |[1] (b) Look at the graph. It shows the percentage yield of ammonia at different temperatures and pressures. What is the percentage yield of ammonia at 450 °C and 400 atmospheres? answer% [1] | (c) | Loo | k at the graph. | | |-----|------|--|--------| | | (i) | What conditions, shown on the graph, give the highest yield of ammonia? | | | | | pressure = atmospheres | | | | | temperature =°C | [1] | | | (ii) | Ammonia is manufactured at 450 °C and 150 atmospheres using an iron catalyst. | | | | | Explain why these conditions are used. | [3] | | | | [Tota | ıl: 6] | | | | | | 4 Jade and Philip are making fertilisers by neutralisation. (a) Complete the word equation for neutralisation. What is the total number of atoms in this formula? | | $(NH_4)_3PO_4$ | | |-----|---|-----| | | The formula of ammonium phosphate is | | | (c) | Jade and Philip also make ammonium phosphate. | | | | | [2] | | | | | | | Which acid and which base should they use? | | | (b) | Jade and Philip want to make potassium nitrate. | | | | acid + base → + water | [1] | | | | | [Total: 4] **5** Pharmaceutical drugs or medicines are speciality chemicals. | (a) | Pharmaceutical drugs are often made by batch processes rather than continuous processes. | |-----|--| | | Explain why. | | | | | | | | | [1] | | (b) | Pharmaceutical drugs often cost a lot of money to make and develop. | | | One reason is that it takes many years to research and test a new drug. | | | Explain two other reasons why it is expensive to make and develop a new drug. | | | | | | | | | | | | [2] | | (c) | Pharmaceutical drugs need to be tested to make sure they are safe to use. | | | |-----|--|--|--| | | The research and testing of pharmaceutical drugs may include | | | | | animal testing | | | | | testing on human volunteers. | | | | | The ideas and views of people in society affect the work of scientists. | | | | | Suggest how the ideas and views of people in society have changed the way scientists research and test pharmaceutical drugs. | [2] | | | | | [Total: 5] | | | | wer station burns methane | e, CH ₄ . | | |---|--|--| | Construct a balanced syr | nbol equation for the comple | te combustion of methane. | | | | | | The power station produce | es nitrogen dioxide gas. | | | The owners need to stop t | he nitrogen dioxide going into | o the atmosphere. | | They can choose two met | hods: | | | use limestone | | | | use sea water. | | | | Look at the table. It shows | some information about eac | h method. | | | Limestone | Sea water | | Percentage of nitrogen dioxide removed | 90% | 99% | | Waste made | carbon dioxide and a solid waste product | none – sea water is
pumped back into the sea | | Cost | expensive | cheap | | Availability | mined from under the ground | must be pumped in from the coast | | Mass needed to remove 1 g of nitrogen dioxide | 1.2g | 3000 g | | The power station is 100 k | ilometres from the coast. | | | The power station makes | 9000g of nitrogen dioxide. | | | Which method would be m | nore suitable for removing nit | rogen dioxide from the wast | | Explain your answer. | g | . • 9 • • • • • • • • • • • • • • • • • • • | | Explain your answer. | | | | | | | | | | | | | | | | | | | 6 7 Kylie is choosing a metal to make a base for a saucepan. Look at the information about some metals. | Metal | Melting point
in °C | Relative electrical
conductivity
(1= low, 10= high) | Relative
conductivity of heat
(1= low, 25= high) | Density
in g/cm ³ | |-------|------------------------|---|--|---------------------------------| | Α | 1535 | 1 | 4.2 | 7.9 | | В | 98 | 2 | 7.8 | 1.0 | | С | 1083 | 6 | 22.3 | 8.9 | | D | 660 | 4 | 11.8 | 2.7 | | (a) | which metal should kylle choose to make a base for a saucepan? | | |-----|---|----| | | | | | | Explain your answer. | | | | | | | | | | | | [| 2] | | (b) | Describe metallic bonding and explain why metals are good conductors of electricity. | | | | You may wish to draw a labelled diagram. | [| ٥J | 8 Ethanol, propanol and butanol are alcohols. Look at the displayed formula of ethanol. | 1 | 'n۱ | Ethanol is made b | v the h | vdration | of athana | \sim H | |---|-----|--------------------|---------|----------|------------|---------------------| | ١ | aj | Ellianoi is made b | y une m | yuralion | oi einene, | $\cup_{2} \cap_{A}$ | Write the **word** equation for this reaction. | r | 41 | |---|----| | | וי | - (b) Alcohols have the general formula ${\rm C_nH_{2n+1}OH.}$ - (i) A molecule of propanol has 3 carbon atoms. Write the formula of propanol. (ii) Draw the **displayed** formula of butanol, C_4H_9OH . [1] (c) Ethanol is also made by fermentation of sugars in a batch process. The table compares making ethanol by hydration and by fermentation. | | Hydration | Fermentation | |-------------------|--|---| | Raw materials | ethene from crude oil | sugar from plants | | Type of process | continuous | batch | | Rate of reaction | fast | slow | | Conditions used | high temperature, 300°C,
high pressure, 60 atm,
and a catalyst | low temperature, 40°C,
atmospheric pressure
and an enzyme in yeast acts as a catalyst | | Purity of product | pure | impure | | Atom economy | 100% | 51% | Evaluate the advantages and disadvantages of each method. Which method do you think is the best for manufacturing ethanol in the UK? Explain why. | quality of written communication will be assessed in your answer to | | |---|-----| [6] | 9 Jill investigates the reactivity of some metals. Look at the diagram. It shows what happens when she puts a strip of zinc into copper(II) sulfate solution. start of experiment end of experiment (a) Write the word equation for the reaction between zinc and copper(II) sulfate solution. **(b)** Iron rusts in the presence of oxygen and water. Look at the equations for two reactions that happen during rusting. Fe $$-$$ 2e $^ \rightarrow$ Fe $^{2+}$ O₂ + 2H₂O + 4e $^ \rightarrow$ 4OH $^-$ Which reaction is oxidation and which is reduction? Explain your answer. [Total: 3] 10 An acid reacts with a base to make a salt and water. acid + base $$\rightarrow$$ salt + water Look at the table. It shows some acids, bases and the salts made from them. | Acid | Base | Salt | |---------------|------------------|-------------------| | sulfuric acid | copper oxide | copper sulfate | | nitric acid | sodium carbonate | | | | zinc oxide | zinc chloride | | sulfuric acid | | magnesium sulfate | | (a) | Complete the table. | [3] | |-----|---|-------| | (b) | Hydrochloric acid, HCl, reacts with calcium carbonate, CaCO ₃ . | | | | Calcium chloride, ${\rm CaC}\it{l}_{2}$, carbon dioxide and water are made. | | | | Write a balanced symbol equation for this reaction. | | | | | . [2] | | (c) | Acids contain hydrogen ions, H ⁺ . Alkalis contain hydroxide ions, OH ⁻ . | | | | Write the ionic equation for neutralisation. | | | | | . [1] | | (d) | Many fertilisers are made by neutralisation. | | | | Fertilisers can cause eutrophication. | | | | Explain what happens during eutrophication. | [3] | PhysicsAndMathsTutor.com [Total: 9] - **11** This question is about polymers. - (a) Poly(chloroethene) is a polymer. Poly(chloroethene) is made from a monomer called chloroethene. Look at the displayed formula of chloroethene. $$H$$ $C = C$ Draw the displayed formula of poly(chloroethene). [1] **(b)** The plastic made from the polymer poly(chloroethene) can be used to make water pipes. One property of poly(chloroethene) is that it is easy to shape. Write about **other** properties of poly(chloroethene) that make it suitable for making water pipes. (c) Look at the diagrams. They show the structures of two plastics. plastic A polymer molecules plastic **B** [Total: 6] | (i) | Plastic A can be stretched easily. | |-----|---| | | | | | Explain why. | | |------|--|-------------------| | | | | | | | | | | | | | | | . [2] | | (ii) | Plastic B has a high melting point. | | | | Explain why. | | | | | | | | | . [1 ⁻ |