Mark scheme – Monitoring Chemical Reactions (H)

Question		n Answer/Indicative content	Marks	Guidance
1		В√	1 (AO2.2)	
		Total	1	
2		D √	1 (AO1.1)	
		Total	1	
3		C √	1 (AO1.1)	
		Total	1	
4		D √	1 (AO2.2)	
		Total	1	
5		A√	1(AO 1.2)	
		Total	1	
6		A√	1(AO 1.1)	
		Total	1	
7	а	 Any one from: Use a single indicator / named single indicator eg methyl orange / phenolphthale (instead of universal indicator)√ Idea that universal indicator does not give a sudden colour change / universal indicator gives a continuous colour change / ORA √ OR Fill the burette exactly to the 0.00 cm³ line √ Idea that this will give accurate volume of acid √ 	a	Explanation must be linked to improvement ALLOW idea of using a pH probe or pH meter to give a more accurate indication of when neutralisation occurs
		OR Idea of adding acid to the alkali <u>slowly</u> or <u>dropwise</u> (near the end point) √ Idea that indicator should change colour on addition of one drop (of acid) √ OR Idea of swirling the alkali while adding the acid √ To ensure mixing of acid and alkali / AW √		ALLOW idea of missing the end point ALLOW two improvements, with no explanation, for 1 mark if no explanations given

			OR		
			Use a white tile under the conical flask \checkmark To see the colour change easily / clearly \checkmark		
			OR		
			Repeat the experiment <u>until concordant or</u> <u>consistent results are obtained</u> √ To obtain a more accurate titre / AW √		
			OR		
			Idea of doing a rough titration √ As this will give you an idea of the endpoint √		
			FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 23.65 (cm³) award 2 marks		
	b	i	Use of volume of acid from titrations 2, 3 & 4 / Use of 23.60, 23.70 & 23.65 √	2 (AO2.2)	DO NOT ALLOW 23.7 (cm ³)
			Accurate volume of acid = 23.65 (cm ³) \checkmark		ALLOW 1 mark for average calculated using all results, ie 24.18 / 24.175 (cm ³) but DO NOT ALLOW 24.2 (cm ³)
		ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.106 (mol / dm ³) award 4 marks $= 0.200 \times 25.0 / 0.200 \times 0.0250 / moles of alkali 1000 moles of acid = 0.005 = 0.0025 / 2.5x10-3 \checkmark= 0.0025 / 0.0025 \times 1000 / 0.02365 23.65 2.5x10^{-3} \times 1000 / 0.02365 23.65 0.1057 (mol/dm3) \checkmarkconcentration = 0.106 (mol / dm3) (3 sig. figs) \checkmark$	4 (AO3 × 2.2) (AO1.2)	ALLOW ECF from moles of alkali ALLOW ECF from average titre in (i) ALLOW ECF from moles of acid i.e. conc = moles or moles x 1000 0.02365 23.65
			Total	8	
8	а	i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.00125 / 1.25×10 ⁻³ award 2 marks Moles = volume / 0.030 / $30 \checkmark$	2 (AO2.2)	ALLOW 1 mark only for 30 ÷ 24 or 0.030 ÷ 24,000, correctly calculated
			$\frac{10000}{24} + \frac{10000}{24} + 10$		

		ii	0.0025 / 2.5 × 10 ⁻³ (g) √	1 (AO2.2)	unit not needed ALLOW ECF from (i) ie 2 x answer from (i)
	b		Moles of chromium = $\frac{10.40}{52.0} = 0.2 \checkmark$ Moles of nickel = $\frac{17.61}{58.7} = 0.3 \checkmark$ Idea that ratio is 2:3 / ratio isn't 1:1 so equation 2 \checkmark	3 (AO2.2)	ALLOW other methods of calculation eg 10.40g of chromium forms $\frac{10.40}{52.0} \times 58.7$ 52.0 = 11.74g nickel $\frac{11.74}{3} \times 2 = 17.61g$ 3 of nickel So, equation 2 ALLOW answers that show equation 1 is not correct Third marking point is dependent on correct mathematical reasoning
			Total	6	
9		i	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 120 (tonnes) award 3 marks M_r of NH ₃ = 17 AND M_r of NH ₄ NO ₃ = 80 \checkmark Mass of ammonium nitrate = $\frac{80}{17} \times 25.5 / 1.5 \times 80 \checkmark$ = 120 (tonnes) \checkmark	3 (AO2.1) 2	ALLOW ECF from incorrect RMMs
		ii	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 10(g) award 2 marks $= \frac{80 \times 12.5}{100} \checkmark$ = 10 (g) \checkmark	(AO1.2) (AO2.2)	ALLOW % yield = (am ÷ pm) × 100 OR 80 = (am ÷ 12.5) × 100 for 1 mark if no other mark awarded
			Total	5	
10	а		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 2.24 / 2.243 / 2.2 (dm³) award 2 marksMoles of ammonium chloride = $5.00 \div 53.5$ or $0.0935 \checkmark$ Volume of ammonia= moles × 24 = 0.0935×24 = $2.24 / 2.243 / 2.2$ (dm³) \checkmark	2(AO 2.2)	ALLOW 0.09 / 0.094 ALLOW ECF from moles of ammonium chloride if first mark not awarded

	OR		
	2 × 53.5 = 107g ammonium chloride produces 2 × 24 = 48 dm ³ ammonia $√$		
	So 5.00g of ammonium chloride produces $\frac{5 \times 2 \times 24}{2 \times 53.5}$		ALLOW 2.16 (ECF from 0.09) Examiner's Comments
	= 2.24 / 2.243 / 2.2 (dm³) ammonia √		Higher ability candidates correctly calculated the volume of ammonia gas as 2.24dm ³ . Examiners gave error carried forward for correctly converting an incorrectly calculated number of moles to a volume.
			 Common errors in this calculation included using 107 (2 × 53.5) as the formula mass before calculating the number of moles of NH₄Cl to give an answer of 1.12 just multiplying 5(g) × 24 dividing the number of moles by 24 converting 24dm³ to cm³ before multiplying by the number of moles
	Moles of acid/HC/ = 35.0 ÷ 1000 × 000.075 = 0.002625 / 0.0026 / 2.625 × 10 ⁻³ / 2.6 × 10 - ³ √		ALLOW 1 mark for moles of acid = 2.625 and moles of alkali = 2.5 (ie use of cm ³ instead of dm ³)
b i	Moles of alkali / NaOH = 25.0 ÷ 1000 × 0.100 = 0.0025 / 2.5 × 10 ⁻³ √	3(AO 2.2)	Third mark dependent on clear attempt at a calculation of moles of acid and alkali ALLOW ECF from calculated moles of acid and alkali
	The acid is in excess √		Examiner's Comments Many candidates correctly calculated the moles of HC/ and NaOH and deduced that the HC/ is in excess.
			AfL

					Many candidates still forget to convert cm ³ to dm ³ before calculating moles or concentrations – see also Question 22(c).
		II	Correct choice of concordant results – 36.3 and 36.2 \checkmark Mean = (36.30 + 36.20) ÷ 2 = 36.25 (cm ³) \checkmark	2(AO 2.2)	ALLOW 1 mark for ECF from any incorrect choice of concordant values eg 35.875 / 35.88 / 35.9 (cm ³) if all values are used Examiner's Comments Many candidates correctly selected the concordant results from titrations 1 & 4 to calculate the mean volume as 36.25 cm ³ . Lower ability candidates tended to calculate the mean from all four titres; 1 mark was given.
			Total	7	
11	а		Mean titre = 17.1 (1) Because titration 1 is a rough estimate / titration 1 is an outlier / titrations 2 and 3 are identical (1)	2	IGNORE anything in the titration table
	b		Moles of acid = 0.00171 (1) Concentration of KOH = 0.0684 (1)	2	ALLOW ECF from incorrect titre / 0.100 × titre ×10 ⁻³ ALLOW ECF from incorrect moles providing answer is to 3 sig figs / moles÷volume
	с		<i>M</i> _r of KOH = 56.1 (1) Concentration of KOH = 3.84 (1)	2	ALLOW correct answer without working ALLOW 3.837 ALLOW ECF from incorrect <i>M</i> _r and / or incorrect concentration from (b) / <i>M</i> _r × conc
			Total	6	
12			A	1	
			Total	1	
			D	1	
13			5	•	
13			Total	1	

		Total	1	
15		D	1	
		Total	1	
16	i	Titrate ammonia against sulfuric acid to obtain volumes needed for complete neutralisation (1) Add these volumes without the use of indicator (1) Slow evaporation of reaction mixture / heat reaction mixture over a steam bath (1) Burette and other chemical apparatus not suitable for using large quantities / very difficult to use a steam bath in the large scale (1)	4	ALLOW heat neutral mixture with carbon or charcoal and then filter off carbon ALLOW Slow evaporation of filtrate / heat filtrate over a steam bath if method involving carbon is used
	ii	34 (g or tonnes) of ammonia makes 132.1 (g or tonnes) of ammonium sulfate / 17 (g or tonnes) of ammonia makes 66 (g or tonnes) of ammonium sulfate (1) So 51 tonnes makes 198.1 tonnes of ammonium sulfate (1)	2	ALLOW one mark for correct calculation of M_r for ammonia AND ammonium sulfate IGNORE units for the first marking point ALLOW one mark for 2 moles of ammonia makes 1 mole of ammonium sulfate
		Total	6	
17		Percentage yield = (actual yield ÷ predicted yield) × 100 / (2.2 ÷ 4.0) × 100 (1) 55 (1)	2	ALLOW full marks for answer with no working out
		Total	2	