1 The table shows some properties of six compounds.

compound	melting point /°C	boiling point /°C	solubility in water	electrical conductivity of solution
copper sulfate	200	decomposes	soluble	high
hexane	-95	69	insoluble	does not dissolve
hydrogen chloride	-112	-85	soluble	high
octane	-57	126	insoluble	does not dissolve
silicon(IV) oxide	1610	2230	insoluble	does not dissolve
sodium chloride	801	1413	soluble	high

octane			–57	126	insoluble	does not dissolve
silicon(IV) oxide			1610	2230	insoluble	does not dissolve
sodiur	n cł	nloride	801	1413	soluble	high
COI	mpo	ounds?	wing lists of comp the box next to yo		table contains onl	y ionic
			f. t t	adtoon als lantala		(1)
×	Α	copper sul	fate, octane and so	odium chloride		
\times	В	silicon(IV)	oxide and sodium	chloride		
×	C	copper sul	fate and sodium c	hloride		
X	D	copper sul	fate and silicon(IV)	oxide		
(b) Tw	/o of	f the compo	ounds in the table	produce a colou	r in a flame test.	
		ne name of o	one of these comp	oounds and the	colour it produces	in the
						(2)
				compou	nd	
				colour		

	(Total for Question 1 = 9 ma	rks)
		\—/
	Show outer electrons only.	(2)
(d)	Draw a dot and cross diagram of a molecule of hydrogen chloride.	
	Describe how separate samples of hexane and water can be obtained from a mixture of hexane and water.	(2)
	(ii) Hexane and water are immiscible.	
	(i) Explain why it has a low boiling point.	(2)
(C)	It has a low boiling point.	
(c)	Hexane is a covalent compound containing simple molecules.	

2 (a) The table shows some information about the atoms and the ions of chlorine and sodium.

Complete the table.

(3)

	symbol of		number of electrons in	
	atom	ion	atom	ion
chlorine	Cl	Cl¯	17	
sodium	Na			10

- (b) When silver nitrate solution, ${\rm AgNO_3}$, is added to sodium chloride solution a white precipitate is formed.
 - (i) Write the balanced equation for this reaction.

(2)

(ii) Silver nitrate solution can be added to a solution to test for the presence of chloride ions.

In this test, dilute nitric acid is added to the solution, followed by the silver nitrate solution.

A white precipitate shows the presence of chloride ions.

Why must the dilute nitric acid be added to make this a reliable test?

Put a cross (☒) in the box next to your answer.

(1)

- A to dilute the solution of chloride ions
- **B** because the precipitate only forms if dilute nitric acid is added
- $oxed{oxed}$ to stop the white precipitate changing colour
- **D** to remove other ions that would also form a white precipitate

*(c) This circuit was used to test the ability of water, solid sodium chloride and sodium chloride solution to conduct electricity.

The results were

substance	conducts electricity
water	no
solid sodium chloride	no
sodium chloride solution	yes

Explain these results by referring to the structures of the substances.	(6)
(Total for Question 2 = 1	2 marks)

3	(a) So	aıur	n chloride is a metal chloride which is soluble in cold water.	
	(i)	Giv	ve the name of a metal chloride which is insoluble in cold water.	
		Put	t a cross (⊠) in the box next to your answer.	(1)
	X	A	copper chloride	(1)
	X	В	lead chloride	
	X	C	magnesium chloride	
	×	D	potassium chloride	
	(ii)	Soc	dium chloride has a melting point of 801 °C.	
		Exp	plain why the melting point of sodium chloride is high.	
				(2)
	(iii)		scribe how you would test for the presence of chloride ions in a solution of dium chloride.	
		300	diditi chionde.	(3)

*(b)	Magnesium has an electronic configuration of 2.8.2. Oxygen has an electronic configuration of 2.6.	
	Explain, in terms of their electronic configurations, how magnesium and oxygen atoms react to form the ionic compound magnesium oxide, MgO, and include a description of the structure of solid magnesium oxide.	(4)
		(6)
	(Total for Question 3 = 12 ma	rks)

4	(a) Su	bsta	ance X is an ammonium salt.	
	(i)	Co	mplete the sentence by putting a cross (\boxtimes) in the box next to your answer.	
		Dil	est was carried out to find which anion is present in substance X . ute hydrochloric acid was added to a sample of substance X . ere was effervescence and the gas given off turned limewater milky.	
		Th	e anion present in substance X is	(4)
	X	A	carbonate ion, CO ₃ ²⁻	(1)
	\times	В	chloride ion, Cl⁻	
	X	C	nitrate ion, NO ₃	
	\times	D	sulfate ion, SO_4^{2-}	
	(ii)		escribe how sodium hydroxide solution can be used to show that amonium ions are present in substance X .	(2)
	pre	ecip	nium ions, Al ³⁺ , react with hydroxide ions in solution to give a white itate of aluminium hydroxide. the ionic equation for this reaction.	(3)

beaker in a laboratory.	
She knew the substance was one of potassium sulfate, potassium iodide, sodium sulfate or sodium iodide.	
Explain how, using chemical tests, the technician could find out if the substance left in the beaker was potassium sulfate, potassium iodide, sodium sulfate or sodium iodide.	
You may include equations in your answer.	
	(6)
(Total for Question 4 = 12 ma	rks)

*(c) A technician found some colourless crystals of a substance left, unlabelled, in a