1	(a) (i)	Wł	nich of the following is the formula for a molecule of butane?	
		Pu	t a cross (⊠) in the box next to your answer.	(1)
	\boxtimes	A	C_3H_6	(1)
			C_3H_8	
	X	C	C_4H_8	
	×	D	C_4H_{10}	
	(ii)	Dra	aw the structure of a molecule of propene, showing all covalent bonds.	(2)
	(b) Co	mp	ete the sentence by putting a cross (🗵) in the box next to your answer.	
	Eth	nand	ol, C ₂ H ₅ OH, can be converted into ethanoic acid, CH ₃ COOH.	
	In:	this	reaction, ethanol is	(4)
	X	Α	dehydrated	(1)
	\times	В	neutralised	
	×	C	oxidised	
	×	D	reduced	

(c) (i)	Describe what you would see when solid sodium carbonate is added to dilute ethanoic acid.	
		(2)
(ii)	When ethanoic acid reacts with ethanol, one of the products is the ester, ethyl ethanoate.	
	Complete the balanced equation for this reaction.	
		(2)
CH ₃ COOH	$+ C_2H_sOH \rightarrow $ +	
	(Total for Question 1 = 8 ma	rks)

2	(a)	During fraction	al distillation	, crude oil is se	eparated into	a number of fractions.
---	-----	------------------------	-----------------	-------------------	---------------	------------------------

The table shows the relative amount of these fractions that can be obtained from crude oil.

The table also shows the relative demand for each of these fractions.

fraction	relative amount obtained	relative demand
LPG	2	6
petrol	12	29
kerosene	16	11
diesel	24	29
fuel oil and bitumen	46	25

	,	(1)
A	kerosene, diesel, fuel oil and bitumen	
В	LPG, petrol and diesel	
C	LPG, petrol and kerosene	
D	petrol, diesel, fuel oil and bitumen	
	, , , , , , , , , , , , , , , , , , , ,	
Exp	plain why cracking is needed.	(2)
	A B C D In a	For which fractions does the demand exceed the supply? Put a cross (☒) in the box next to your answer. A kerosene, diesel, fuel oil and bitumen B LPG, petrol and diesel C LPG, petrol and kerosene D petrol, diesel, fuel oil and bitumen In another process, called cracking, large molecules in some fractions are converted into smaller molecules. Explain why cracking is needed.

(b) The table shows the number of carbon atoms per molecule in the substances present in each of the fractions.

fraction	number of carbon atoms per molecule
LPG	1 – 4
petrol	4 – 12
kerosene	9 – 16
diesel	15 – 25
fuel oil and bitumen	over 25

Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.

(1)

As the number of carbon atoms in the molecules of a hydrocarbon increases

- A the number of hydrogen atoms in the molecule remains the same
- B the boiling point of the hydrocarbon increases
- C the hydrocarbon becomes easier to burn
- D the viscosity of the hydrocarbon decreases
- (c) The structure of a molecule of ethene is

(i) What is the formula of a molecule of ethene?Put a cross (⋈) in the box next to your answer.

(1)

- ☑ A CH₂
- \boxtimes **B** C_2H_4
- C C_pH₂
- \square **D** $(CH_2)_n$

	(Total for Question 2 = 11 ma	rks)
		(2)
	Explain how the product of combustion of these sulfur impurities affects the environment.	(2)
	(ii) Some hydrocarbon fuels can contain sulfur impurities.	
		(2)
	(i) Explain why some people are concerned about the increase in the amount of carbon dioxide in the atmosphere.	
(d)	Many power stations generate electricity by burning fossil fuels, such as fuel oil. This process adds carbon dioxide to the atmosphere.	
		(2)
	Write a balanced equation for this reaction.	(2)
	(ii) Ethene can be converted into poly(ethene).	

3 Alkanes and alkenes are hydrocarbons.

The structure of a molecule of butane is shown.

(a) Which of the following is the empirical formula for butane?

(1)

- A CH
- B CH,
- \square **D** C_4H_{10}
- (b) Figure 5 shows some information about the alkenes, ethene and propene.

Complete the table. The structure of propene must show all covalent bonds.

(2)

name of alkene	molecular formula	structure
ethene		H H H
propene	C_3H_6	

Figure 5

(c)	Bu	ten	e reacts with steam to produce butanol.	
			$C_4H_8 + H_2O \rightarrow C_4H_9OH$	
	(i)	Ca 1.4	Iculate the maximum mass of butanol, C_4H_9OH , that can be produced when kg of butene, C_4H_8 , reacts with excess steam.	
			lative atomic masses: $H = 1$, $C = 12$, $O = 16$ ative molecular mass of butene, $C_4H_8 = 56$)	(3)
			mass of butanol =	ka
	(···)	14/1		ку
	(II)	VVI	nat type of reaction takes place between butene and steam?	(1)
[X	A	addition	
[X	В	dehydration	
[X	C	neutralisation	
[X	D	substitution	

•••••		
		(2)
Z Us	mixture remains orange sing the results, comment on the structures of the hydrocarbons X , Y and Z .	
Y	3	
X	orange mixture becomes colourless	
Th	he results are:	

4 The diagram shows the structure of a propene molecule.

(a) Which row of the table describes propene?

Put a cross (☒) in the box next to your answer.

(1)

	hydrocarbon	unsaturated
⊠ A	yes	no
⊠ B	no	yes
⊠ C	yes	yes
⊠ D	no	no

(b) Propene can form the polymer poly(propene).

Draw a diagram to show the part of a poly(propene) molecule formed from two propene molecules.

(2)

bonus.		(2
bonds. (d) Propene can be made by cracking fractions obtained from crude oil. (i) This equation shows the cracking of decane to produce propene and butane. $C_{10}H_{22} \rightarrow 2C_3H_6 + C_4H_{10}$ $decane propene butane$ Give the total mass of products formed if 17 g of decane is cracked in this wa (ii) Explain what is meant by cracking . (iii) Explain why it is necessary to crack crude oil fractions that contain large molecules.		
) Propene can be made by crackir	ng fractions obtained from crude oil.	
-	acking of decane to produce propene and	
 (d) Propene can be made by cracking fractions obtained from crude oil. (i) This equation shows the cracking of decane to produce propene and butane. C₁₀H₂₂ → 2C₃H₆ + C₄H₁₀ decane propene butane Give the total mass of products formed if 17 g of decane is cracked in this way. (iii) Explain what is meant by cracking. (iii) Explain why it is necessary to crack crude oil fractions that contain large molecules. 	way. (1	
(ii) Explain what is meant by cra	acking.	(2
(***) F		
	o crack crude oil fractions that contain large	(2
bonds. (d) Propene can be made by cracking fractions obtained from crude oil. (i) This equation shows the cracking of decane to produce propene and butane. C₁₀H₂₂₂ → 2C₃H₆ + C₄H₁₀ decane propene butane Give the total mass of products formed if 17 g of decane is cracked in this wa (ii) Explain what is meant by cracking .		

5	Propene is an alkene.			
	The formula of its molecule is C_3H_6 .			
	(a) (i)	Draw the structure of a propene molecule, showing all of the bonds.	(2)	
	(;;)	One malegule of decane C. H., can be gracked to produce one malegule of		
	(11)	One molecule of decane, $C_{10}H_{22}$, can be cracked to produce one molecule of propene and one molecule of an alkane X only.		
		Complete the sentence by putting a cross (\boxtimes) in the box next to your answer.		
		The formula of a molecule of alkane X is	(1)	
	×	A C ₇ H ₁₄	(1)	
	×	B C ₇ H ₁₆		
	×	$C C_8H_{16}$		
	\times	$D C_{13}H_{28}$		
	(b) Pro	ppane is an alkane.		
	Pro	ppane and propene are both gases.		
		ven a sample of each gas, describe a test to show which gas is propane and iich gas is propene.	(3)	

*(c)	Propene is used to make the polymer poly(propene).	
	Explain how poly(propene) molecules are formed from propene molecules and relate the properties of poly(propene) to its uses.	
		(6)
	(Total for Question 5 = 12 i	marks)