| 1 | (a) (i) | Wł | nich of the following is the formula for a molecule of butane? | | |---|-------------|------|--|-----| | | | Pu | t a cross (⊠) in the box next to your answer. | (1) | | | \boxtimes | A | C_3H_6 | (1) | | | | | C_3H_8 | | | | X | C | C_4H_8 | | | | × | D | C_4H_{10} | | | | (ii) | Dra | aw the structure of a molecule of propene, showing all covalent bonds. | (2) | (b) Co | mp | ete the sentence by putting a cross (🗵) in the box next to your answer. | | | | Eth | nand | ol, C ₂ H ₅ OH, can be converted into ethanoic acid, CH ₃ COOH. | | | | In: | this | reaction, ethanol is | (4) | | | X | Α | dehydrated | (1) | | | \times | В | neutralised | | | | × | C | oxidised | | | | × | D | reduced | (c) (i) | Describe what you would see when solid sodium carbonate is added to dilute ethanoic acid. | | |----------------------|--|------| | | | (2) | (ii) | When ethanoic acid reacts with ethanol, one of the products is the ester, ethyl ethanoate. | | | | Complete the balanced equation for this reaction. | | | | | (2) | | CH ₃ COOH | $+ C_2H_sOH \rightarrow $ + | | | | (Total for Question 1 = 8 ma | rks) | | 2 | (a) | During fraction | al distillation | , crude oil is se | eparated into | a number of fractions. | |---|-----|------------------------|-----------------|-------------------|---------------|------------------------| |---|-----|------------------------|-----------------|-------------------|---------------|------------------------| The table shows the relative amount of these fractions that can be obtained from crude oil. The table also shows the relative demand for each of these fractions. | fraction | relative amount obtained | relative demand | |----------------------|--------------------------|-----------------| | LPG | 2 | 6 | | petrol | 12 | 29 | | kerosene | 16 | 11 | | diesel | 24 | 29 | | fuel oil and bitumen | 46 | 25 | | | , | (1) | |-----|---|--| | A | kerosene, diesel, fuel oil and bitumen | | | В | LPG, petrol and diesel | | | C | LPG, petrol and kerosene | | | D | petrol, diesel, fuel oil and bitumen | | | | , | | | Exp | plain why cracking is needed. | (2) | | | A B C D In a | For which fractions does the demand exceed the supply? Put a cross (☒) in the box next to your answer. A kerosene, diesel, fuel oil and bitumen B LPG, petrol and diesel C LPG, petrol and kerosene D petrol, diesel, fuel oil and bitumen In another process, called cracking, large molecules in some fractions are converted into smaller molecules. Explain why cracking is needed. | (b) The table shows the number of carbon atoms per molecule in the substances present in each of the fractions. | fraction | number of carbon atoms
per molecule | |----------------------|--| | LPG | 1 – 4 | | petrol | 4 – 12 | | kerosene | 9 – 16 | | diesel | 15 – 25 | | fuel oil and bitumen | over 25 | Complete the sentence by putting a cross (\boxtimes) in the box next to your answer. (1) As the number of carbon atoms in the molecules of a hydrocarbon increases - A the number of hydrogen atoms in the molecule remains the same - B the boiling point of the hydrocarbon increases - C the hydrocarbon becomes easier to burn - D the viscosity of the hydrocarbon decreases - (c) The structure of a molecule of ethene is (i) What is the formula of a molecule of ethene?Put a cross (⋈) in the box next to your answer. (1) - ☑ A CH₂ - \boxtimes **B** C_2H_4 - C C_pH₂ - \square **D** $(CH_2)_n$ | | (Total for Question 2 = 11 ma | rks) | |-----|---|------| | | | | | | | | | | | | | | | (2) | | | Explain how the product of combustion of these sulfur impurities affects the environment. | (2) | | | (ii) Some hydrocarbon fuels can contain sulfur impurities. | | | | | | | | | | | | | | | | | (2) | | | (i) Explain why some people are concerned about the increase in the amount of carbon dioxide in the atmosphere. | | | (d) | Many power stations generate electricity by burning fossil fuels, such as fuel oil. This process adds carbon dioxide to the atmosphere. | | | | | | | | | | | | | | | | | (2) | | | Write a balanced equation for this reaction. | (2) | | | (ii) Ethene can be converted into poly(ethene). | | **3** Alkanes and alkenes are hydrocarbons. The structure of a molecule of butane is shown. (a) Which of the following is the empirical formula for butane? (1) - A CH - B CH, - \square **D** C_4H_{10} - (b) Figure 5 shows some information about the alkenes, ethene and propene. Complete the table. The structure of propene must show all covalent bonds. (2) | name of alkene | molecular formula | structure | |----------------|-------------------|-----------| | ethene | | H H H | | propene | C_3H_6 | | Figure 5 | (c) | Bu | ten | e reacts with steam to produce butanol. | | |-----|---------------|-----------|--|-----| | | | | $C_4H_8 + H_2O \rightarrow C_4H_9OH$ | | | | (i) | Ca
1.4 | Iculate the maximum mass of butanol, C_4H_9OH , that can be produced when kg of butene, C_4H_8 , reacts with excess steam. | | | | | | lative atomic masses: $H = 1$, $C = 12$, $O = 16$ ative molecular mass of butene, $C_4H_8 = 56$) | (3) | | | | | mass of butanol = | ka | | | (···) | 14/1 | | ку | | | (II) | VVI | nat type of reaction takes place between butene and steam? | (1) | | [| X | A | addition | | | [| X | В | dehydration | | | [| X | C | neutralisation | | | [| X | D | substitution | | | | | | | | | ••••• | | | |----------------|---|-----| | | | | | | | | | | | (2) | | Z
Us | mixture remains orange sing the results, comment on the structures of the hydrocarbons X , Y and Z . | | | Y | 3 | | | X | orange mixture becomes colourless | | | Th | he results are: | | | | | | 4 The diagram shows the structure of a propene molecule. (a) Which row of the table describes propene? Put a cross (☒) in the box next to your answer. (1) | | hydrocarbon | unsaturated | |-----|-------------|-------------| | ⊠ A | yes | no | | ⊠ B | no | yes | | ⊠ C | yes | yes | | ⊠ D | no | no | (b) Propene can form the polymer poly(propene). Draw a diagram to show the part of a poly(propene) molecule formed from two propene molecules. (2) | bonus. | | (2 | |---|--|----| | | | | | bonds. (d) Propene can be made by cracking fractions obtained from crude oil. (i) This equation shows the cracking of decane to produce propene and butane. $C_{10}H_{22} \rightarrow 2C_3H_6 + C_4H_{10}$ $decane propene butane$ Give the total mass of products formed if 17 g of decane is cracked in this wa (ii) Explain what is meant by cracking . (iii) Explain why it is necessary to crack crude oil fractions that contain large molecules. | | | | | | | |) Propene can be made by crackir | ng fractions obtained from crude oil. | | | - | acking of decane to produce propene and | | | | | | | (d) Propene can be made by cracking fractions obtained from crude oil. (i) This equation shows the cracking of decane to produce propene and butane. C₁₀H₂₂ → 2C₃H₆ + C₄H₁₀ decane propene butane Give the total mass of products formed if 17 g of decane is cracked in this way. (iii) Explain what is meant by cracking. (iii) Explain why it is necessary to crack crude oil fractions that contain large molecules. | way.
(1 | | | | | | | (ii) Explain what is meant by cra | acking. | (2 | | | | | | | | | | (***) F | | | | | o crack crude oil fractions that contain large | (2 | | bonds. (d) Propene can be made by cracking fractions obtained from crude oil. (i) This equation shows the cracking of decane to produce propene and butane. C₁₀H₂₂₂ → 2C₃H₆ + C₄H₁₀ decane propene butane Give the total mass of products formed if 17 g of decane is cracked in this wa (ii) Explain what is meant by cracking . | | | | | | | | | | | | | | | | 5 | Propene is an alkene. | | | | |---|---|---|-----|--| | | The formula of its molecule is C_3H_6 . | | | | | | (a) (i) | Draw the structure of a propene molecule, showing all of the bonds. | (2) | | | | (;;) | One malegule of decane C. H., can be gracked to produce one malegule of | | | | | (11) | One molecule of decane, $C_{10}H_{22}$, can be cracked to produce one molecule of propene and one molecule of an alkane X only. | | | | | | Complete the sentence by putting a cross (\boxtimes) in the box next to your answer. | | | | | | The formula of a molecule of alkane X is | (1) | | | | × | A C ₇ H ₁₄ | (1) | | | | × | B C ₇ H ₁₆ | | | | | × | $C C_8H_{16}$ | | | | | \times | $D C_{13}H_{28}$ | | | | | (b) Pro | ppane is an alkane. | | | | | Pro | ppane and propene are both gases. | | | | | | ven a sample of each gas, describe a test to show which gas is propane and iich gas is propene. | (3) | *(c) | Propene is used to make the polymer poly(propene). | | |------|---|--------| | | Explain how poly(propene) molecules are formed from propene molecules and relate the properties of poly(propene) to its uses. | | | | | (6) | (Total for Question 5 = 12 i | marks) |