Question	Answer	Acceptable answers	Mark
Number			
1(a)(i)	C cations in a sea of electrons		(1)

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	(metals have) high melting <u>point</u>	a lot of energy needed to break/overcome (metallic) bonds	
		energy needed to break/overcome strong (metallic) bonds	
		Ignore references to boiling point Reject reference to intermolecular forces/covalent (bonds) /attraction between	
		ions/breaking ionic bonds/ breaking covalent bonds	(1)

Question	Answer	Acceptable answers	Mark
Number			
1(a)(iii)	An explanation including two of the following points		
	argon is inert/does not react/is unreactive (1)	Ignore argon is in group 0/8 argon is a noble gas Ignore argon does not burn	
	because it has 8 electrons in its outer shell (1)	does not {gain/lose/share} electrons	
		has a full outer shell (of electrons)	
		has a stable electron configuration	
	metals would react in/with air/oxygen (1)		
		form (metal) oxide	
	argon will exclude air from welding point (1)	prevents oxidation	(2)

Question Number	Answer	Acceptable answers	Mark
1(b)	2 Fe + 3 Br ₂ \rightarrow 2 FeBr ₃		
	M1 Correct symbol/formulae (1) M2 balancing of correct symbol/formulae (1)	Reject incorrect use of upper/lower case / subscripts for M1 but allow ECF for M2	(2)

Question	Answer	Acceptable answers	Mark
Number			
1(c)	C – grey solid		
			(1)

Question Number	Answer	Acceptable answers	Mark
1(d)	A explanation including	For M1 reject reference to reactivity of halide ions eg chlorine more reactive than bromide	
	M1 order of reactivity chlorine > bromine > iodine (1)	halogens/they decrease in reactivity down the group/table	
		chlorine is most reactive and iodine is least reactive	
		Ignore reference to displacement of halide ions eg chlorine displaces bromide	
	and M2 one of the following points	Ignore "replaces"	
	 chlorine displaces bromine (from bromide) AND chlorine displaces iodine (from iodide) (1) bromine displaces iodine 	chlorine reacts with bromide AND iodide chlorine takes part in two (displacement) reactions bromine reacts with iodide AND does not react with chloride	
	(from iodide) AND bromine does not displace chlorine (from chloride) (1)	bromine takes part in one (displacement) reactions	
	 iodine does not displace chlorine(from chloride) AND iodine does not displace bromine (from bromide) (1) 	iodine does not react with chloride or bromide iodine does not take part in any (displacement) reactions	(2)

Question	Answer		Acceptable answers	Mark
Number				
2(a)	C oxygen other gases r	nitrogen		(1)

Question Number	Answer	Acceptable answers	Mark
2 (b)(i)	Photosynthesis /absorb carbon dioxide and releases oxygen (1)	reject respiration for photosynthesis ignore breathe in carbon dioxide ignore breathe out oxygen	
	• (green) plants (1)		(2)

Question Number	Answer	Acceptable answers	Mark
2 (b)(ii)	A description to include second marking is dependent on the first		
	a glowing splint (1)relights (1)	smouldering splint reject a blown out splint	
		lit splint glows brighter (2)	(2)

Question	Answer	Acceptable answers	Mark
Number			
2 (c)(i)	to ensure all the oxygen is removed/to ensure the oxygen is completely removed	ignore ensure all the air is removed	(1)

Question Number	Answer	Acceptable answers	Mark
2 (c)(ii)	 An explanation linking measure the volume of gas in the syringe at the end of experiment (1) 		
	 subtract from {100 cm³/ original volume} to give volume of oxygen (1) 	e.g. 100-79 (= 21 cm ³)	(2)

Question Number	Answer	Acceptable answers	Mark
3(a)	loss of oxygen	gain of electrons	(1)

Question Number	Answer	Acceptable answers	Mark
3(b)	 An explanation to include aluminium high in reactivity series / aluminium more reactive than {carbon / iron} (1) (aluminium reduction) needs more energy / electrolysis is {more / very} powerful (means of reduction) / carbon cannot displace aluminium (from aluminium oxide) (1) 	aluminium compounds are stable aluminium is more reactive ignore just 'very reactive'/highly reactive allow stronger (method of reduction)	(2)

Question Number	Answer	Acceptable answers	Mark
3(c)	$2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ (3) Ihs (1) rhs (1) balancing correct formulae (1)		(3)

Question Number		Indicative Content	Mark
QWC	*3(d)	A description including some of the following points Property change (other than increased strength) or use of alloy increased hardness decreased malleability increased corrosion resistance shape-memory gold alloy for jewellery stainless steel used for cutlery steel used for construction nitinol (shape-memory alloy) used for spectacle frames / stents idea of any use of metal after alloying	(6)
		 Structural change pure metal – atoms are all the same size / suitable diagram of pure metal structure atoms arranged in a regular way / lattice alloy – atoms are of different sizes / suitable diagram of alloy structure disrupts arrangement of atoms atoms in pure metal structure can slide over each (when bent) alloy – sliding prevented by different sized atoms 	

Level	0	No rewardable content
1	1 - 2	 a limited description of how one property changes, one use or one statement related to structure eg iron rusts, stainless steel does not; atoms in a pure metal all the same size the answer communicates ideas using simple language and uses limited scientific terminology spelling, punctuation and grammar are used with limited accuracy
2	3 – 4	 a simple description of how two properties change or two uses or a simple description of why alloys become stronger or a property/use and a statement about structure eg the atoms in a pure metal have a regular arrangement but in alloys there are different sized atoms the answer communicates ideas showing some evidence of clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed description of why alloys become stronger including at least one change in property of an alloy or use eg the atoms in a pure metal have a regular arrangement but in alloys the different sized atoms stops the atoms sliding over each other and how alloys are more useful such as gold alloys used in jewellery the answer communicates ideas clearly and coherently uses a range of scientific terminology accurately spelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
4(a)(i)	carbon (is oxidised)	Just 'carbon dioxide' (0)	(1)

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	1 mark if answer only mentions one of the metals. An explanation linking two of iron is lower in reactivity than	Allow carbon is more reactive than iron /ORA(1)	(2)
	aluminium/ORA (1) carbon can remove the oxygen from iron oxide (1) electrolysis is a more powerful	Allow aluminium is more reactive than carbon /ORA (1) Ignore carbon can reduce iron oxide	
	method (than using carbon) / electrolysis is needed to {remove the oxygen from/reduce} aluminium oxide (1)	I gnore electrolysis is used to extract aluminium	
	iron compounds less stable than aluminium compounds/ORA (1)		

Question Number	Answer	Acceptable answers	Mark
4(b)	An explanation linking three of atoms of gold all the same (size)	Reject the use of the word molecule once only	(3)
	(1)	Allow particles	
	in pure gold {layers/rows/sheets/lines} of the {gold / metal} atoms slide over each other (when force is applied) (1)	If layers/rows/sheets/lines is omitted twice, you can award one mark.	
	copper atoms are {smaller / different size} (1)		
	(copper atoms) {disrupt / distort /disturb} the {structure / layers} (1)		
	stops {layers/rows/sheets/lines} of gold atoms from sliding over each other (1)		

Questi		Indicative Content		Mark
Numbe				
QWC	*4(c)	An explanation including some of	T .	
		Use	Relevant properties	
		Aluminium		
		aeroplanes, cars, bicycles,	low density (allow light),	
		trains, trucks, ladders, window	strong, resistant to corrosion	
		frames, door frames,		
		greenhouses, pylons, ship		
		masts, walking poles, golf		
		clubs, baseball bats		
		(overhead) power/electricity	low density (allow light), good	
		cables	conductor of electricity,	
			resistant to corrosion	(()
		foil, food packaging, cans,	low density (allow light),	(6)
		sweet wrappers, saucepans,	resistant to corrosion	
		blister packs for pills		
		Copper		
		electrical wires/cables,	good conductor of electricity	
		lightning conductors,		
		electromagnets		
		water pipes, roofing, coins,	resistant to corrosion	
		jewellery, statues, musical		
		instruments		-
		Gold	aveallant resistance to	
		jewellery, coins, in dentistry	excellent resistance to	
			corrosion, valuable, low	
		olootropia dovigos, giravit	strength	-
		electronic devices, circuit	excellent conductor of	
		boards, switch contacts Silver	electricity	
		jewellery, cutlery, coins	very good resistance to	
		Jewellery, cuttery, coms	corrosion, valuable, low	
			strength	
		electronic devices, circuit	excellent conductor of	-
		boards, switch contacts	electricity	
		General points	Ciccinicity	
		A property must be relevant to the u	use and from the table in the	
		question.		
		Ignore additional properties.		
		Look for the use first, then the relev		
		re-write or compare the properties v		
		Ignore non-specific uses such as bui	laing materials/structures, making	
		alloys		

Level	0	No rewardable content
1	1 -	a limited explanation e.g. states correct uses of two metals / explains a
	2	use of one of the metals related to a property in the table
		the answer communicates ideas using simple language and uses limited
		scientific terminology
		spelling, punctuation and grammar are used with limited accuracy
2	3 -	a simple explanation e.g. states correct uses of three metals and relates
	4	one use to a property / explains uses of two metals related to their
		properties in the table
		the answer communicates ideas showing some evidence of clarity and
		organisation and uses scientific terminology appropriately
		spelling, punctuation and grammar are used with some accuracy
3	5 -	a detailed explanation e.g. explains uses of three metals and relates use
	6	to property in the table in each case
		the answer communicates ideas clearly and coherently uses a range of
		scientific terminology accurately
		spelling, punctuation and grammar are used with few errors

Question	Answer	Acceptable answers	Mark
Number			
5 (a)(i)	CuCl ₂		(1)

Question Number	Answer	Acceptable answers	Mark
5(a)(ii)	An explanation linking the following points Either the amount of product calculated (1)		
	 using the equation (for the reaction) (1) the maximum amount of {product / copper chloride} (1) when all {reactant / copper} reacts (1) 	using reacting masses amount of product when all {reactant / copper} reacts (2)	(2)

Question Number	Answer	Acceptable answers	Mark
5(b)(i)	2Fe(s) + 3Br ₂ (g) → 2FeBr ₃ (s) reactant formulae (1) balancing correct formulae		
	(1) state symbols (1) s and g must be lower case	allow state symbol mark even if other marks not awarded	(3)

Question	Answer	Acceptable answers	Mark
Number			
5 (b)(ii)	56 + (3 x 80) (1)	give full marks for correct answer	
	= 296	with no working	(1)

Question	Answer	Acceptable answers	Mark
Number			
5 (b)(iii)	ratio: 56/310 (1)		
	% iron 56/310 x 100 (%) (1)	any number/310 x 100 (%)	
	(= 18 (%))	18.06/18.1 give full marks for correct answer	(2)
		with no working	

Question	Answer	Acceptable answers	Mark
Number			
5 (b)(iv)	НО	$OH_1O_1H_1H_1O_1$	
			(1)