Question Number	Answer	Acceptable answers	Mark
1(a)	B potassium and caesium, copper and iron		(1)

Question Number	Answer	Acceptable answers	Mark
1(b)(i)	A description linking	Any reference to molecules/molecular/intermolecul ar/covalent scores 0 marks overall	
	(regular arrangement of) positive ions /cations (1)	metal ions	
		reject "negative and positive particles" / positive atoms / protons	
	(surrounded by) {delocalised/sea	ignore descriptions of atoms in rows/ layers of particles etc	
	of} electrons (1)	cloud of electrons ignore free	(2)

Question Number	Answer	Acceptable answers	Mark
1 (b)(ii)	An explanation linking		
	M1 electrons (1) M2 move/flow (1)	pass through / travel	
	M2 dep on M1	For M2: ignore free/delocalised (electrons) ignore electricity flows ignore (electrons) vibrate ignore carry/pass the current/charge	(2)

Question Number	Answer	Acceptable answers	Mark
1(c)(i)	A description including any two from	moves (around) on the surface (2)	
	floats (1)		
	moves (around) (1)		
	effervescence / fizzing / bubbles (1)	white smoke formed ignore gas/hydrogen given off	
	melts/changes to a ball shape (1)	dissolves / explodes	
	becomes smaller /disappears (1)	Ignore: burns/catches fire/ignites/flame/sparks ignore addition of indicators	(2)

Question Number	Answer	Acceptable answers	Mark
1 (c)(ii)	$2Na + 2H_2O \rightarrow 2NaOH + H_2$	NaHO	
	LHS (1) RHS (1)	ignore brackets around OH	
	balancing of correct formulae(1)	Use of lower case h, upper case A, lower case o, or use of superscripts or large numbers inside the formulae loses 1 mark only	
		ignore state symbols	(3)

Question Number	Answer	Acceptable answers	Mark
2(a)	An explanation including two ofdoes not corrode/tarnish	Ignore does not rust	(2)
	(1)unreactive (1) M2	does not react with oxygen	
		and/or water Ignore least reactive/less reactive/not very reactive/reacts very slowly	
	 shiny/lustrous (1) M3 malleable/easily shaped (1) 	attractive Ignore soft/strong	
	 scarce/expensive/maintain s its value (1) M5 	valuable	

Question	Answer	Acceptable answers	Mark
Number			
2 (b)	C 24 carat		(1)

Question Number	Answer	Acceptable answers	Mark
2(c)	 An explanation linking three of (gold) atoms all same size (1) {layers/sheets} (of atoms) {slide/slip/move} M2 (over one another easily) (1) (alloy) added metals atoms are different size (1) disrupt{layers/structure/ arrangement} of gold 	Marks can be gained from suitable diagrams No mention of layers/sheets in answer maximum 2 marks Accept particles/ions for atoms reject molecules (once only) {lock/hold} layers/atoms together	(3)
	atoms (1) M4 • prevent {layers/atoms} {slide/slip/move} (1) M5		

Questio Number		Indicative Content	Mark
QWC	*2(d)	An explanation including some of the following points reactivity series • aluminium more reactive than iron/aluminium higher than iron in reactivity series • aluminium forms stronger bonds with oxygen than iron does • aluminium oxide more stable (to decomposition) than iron oxide • aluminium more reactive than carbon/aluminium higher than carbon in reactivity series cost • electrolysis/electricity (more) expensive (than heating with carbon) • heating with carbon is (relatively) cheap method Iron • carbon more reactive than iron/iron less reactive than carbon • iron oxide reduced • by heating with carbon • no need to use (expensive) electrolysis • Aluminium • aluminium oxide difficult to reduce • aluminium oxide difficult to reduce • aluminium oxide cannot be reduced by (heating with) carbon • (cheaper) reduction with carbon does not work • need more powerful method of reduction • therefore must use electrolysis	(6)
Level	0	No rewardable content	
1	1 - 2	 a limited description e.g. aluminium is very reactive e.g. aluminium extracted by electrolysis e.g. iron extracted using carbon e.g. costs more to extract aluminium the answer communicates ideas using simple language ar limited scientific terminology spelling, punctuation and grammar are used with limited accuracy 	id uses

	1	
2	3 - 4	 a simple description containing two statements referring to one method of extraction and a cost e.g. iron is extracted by heating iron oxide with carbon and this is cheaper
		OR the relative reactivity of one metal and a method of extraction e.g. aluminium is extracted by electrolysis. Aluminium is more reactive than iron (has made a comparison in reactivity)
		OR the relative reactivity of one metal and reference to cost e.g. aluminium is a more reactive metal and so is expensive to extract
		 the answer communicates ideas showing some evidence of clarity and
		 organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy
3	5 - 6	 a detailed description containing at least three statements referring to relative reactivity of both metals, a method of extraction of at least one metal, and a cost reference
		 e.g. aluminium is more reactive than iron so is extracted by electrolysis which is expensive the answer communicates ideas clearly and coherently uses a
		range of scientific terminology accuratelyspelling, punctuation and grammar are used with few errors

Question Number	Answer	Acceptable answers	Mark
3(a)	С		(1)

Question Number	Answer	Acceptable answers	Mark
3(b)	 a description including the following heat/reduced {with} (1) (with) carbon/coke/carbon monoxide(1) 	Ignore references to blast furnace Reject references to electrolysis	(2)

Question	Answer	Acceptable answers	Mark
	AIISWEI	Acceptable allsweis	IVIAI K
Number			
3 (c)	A description including three of		
	the following, with a maximum of		
	two from either group of three		
	 reduction is the loss of 		
	oxygen (1)		
	 copper(oxide) loses 		
	oxygen (1)		
	• (hence) copper (oxide) is		
	reduced (1)		
	OR		
	 oxidation is the gain of 		
	oxygen (1)		
	 hydrogen gains oxygen (1) 		
	(hence) hydrogen is		
	oxidised (1)		(3)
			(3)

Question Number	Answer	Acceptable answers	Mark
3(d)	 an explanation linking one of the following pairs when bent / deformed (1) shape memory alloys return to their original shape (1) OR shape memory alloys return to their original shape (1) 	must refer to metal's shape being changed i.e. ignore "broke", "sat on etc."	
	 (but) other alloys stay deformed (1) 		(2)

Question Number	Answer	Acceptable answers	Mark
3 (e)	С		(1)

Question Number	Answer	Acceptable answers	Mark
4 (a)(i)	Any one from		
	 steel {corrodes/rusts} 	copper is less reactive than {iron/steel}	
	 prevents {corrosion/rusting} 		
	 (copper) does not {corrode/rust} 		
	(copper) oxidises slower	does not oxidise/does not react with {oxygen/water}	
	 kills bacteria (1) 	prevents germs spreading	
		cheaper than (using) pure copper	
		Ignore to make it less reactive and references to appearance and	(1)
		erosion	(1)

Question Number	Answer	Acceptable answers	Mark
4(a)(ii)	zinc	Zn	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)	An explanation linking three of the following:		
	 in pure metal {layers/sheets} (of particles){slide/slip/move} (over one another easily) (1) second (metal) particles 	Accept ions or atoms for particles but reject molecules different sized particles	
	 larger (1) disrupt {layers/structure} (1) prevent {layers/particles} slipping (1) 	{lock/hold} layers together Ignore glue	(3)

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	D		(1)

Question Number	Answer	Acceptable answers	Mark
4(c)(ii)	An explanation linking two of the following		
	 (aluminium) more reactive (1) forms more stable compounds	too reactive/{above carbon/higher up} in reactivity series forms compounds with stronger	
	(1)	bonds	
	 more difficult {to remove oxygen /split (compound)} (1) 	carbon {cannot remove oxygen/displace aluminium}	
	 electrolysis is more powerful method of reduction (1) 		(2)

Question number	Answer	Mark
5(a)(i)	c	(1)

Question number	Answer	Mark
5(a)(ii)	С	(1)

Question number	Answer	Mark
5(b)	reactants are being used up (1)	(1)

Question number	Answer	Mark
5(c)	 An explanation that combines identification via a judgement (1 mark) to reach a conclusion via justification/reasoning (1 mark): aluminium and copper have different size atoms (1) and so this prevents the layers of metal atoms from sliding over one another (1) 	(2)

Question number	Answer	Additional guidance	Mark
5(d)	proportion gold = 9 ÷ 24 (= 0.375) (1)	Award full marks for correct numerical answer without working.	
	mass = 0.375 × 12 = 4.5 (g) (1)		(2)