Question Number	Answer	Acceptable answers	Mark
1(a)(i)	2.3		(1)

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	A		(1)

Question Number	Answer			Acceptable answers	Mark
1 (a)(iii)					(2)
	particle	relative mass	relative charge		
	electron		-		
	neutron	1	0 /neutral/no charge		
	proton	1			
	4 correct = 2/3 correct 1/0 correct	= 1 mark			

Questio		Indicative content	Mark
Number QWC	*1(b)	An explanation linking some of the following	(6)
		 Structure of boron-11 boron-11 atom has 5 /same number of protons 5 /same number of electrons 6 neutrons / one more neutron than boron 10 Working out RAM relative atomic mass is 10.8 because weighted mean more boron-11 than boron-10 boron-11 atoms are heavier (therefore) relative atomic mass nearer 11 than 10 OR in sample given 20/100 of the atoms have a mass of 10 in sample given 80/100 of the atoms have a mass of 11 20/100*10=2 80/100*11=8.8 2+8.8=10.8 NB the diagram in part (a) gives the structure for boron-10 so do not give credit for this (even if claimed to be structure of boron-11 by referring to it as 'it') 	
Level	0	No rewardable content	
1	1-	 a limited description e.g. boron-11 has 5 protons and a neutrons the answer communicates ideas using simple language uses limited scientific terminology spelling, puncuation and grammar are used with limite accuracy 	e and
2	3-	 a simple explanation e.g. boron-11 has 5 protons, 5 electrons and 6 neutrons and is heavier than boron-10 the answer communicates ideas showing some evidence clarity and organisation and uses scientific terminology appropriately spelling, punctuation and grammar are used with some accuracy 	ce of /
3	5 – 6	 a detailed explanation e.g. boron-11 has 5 protons, 5 electrons and 6 neutrons, is heavier than boron-10 ar is more of boron-11 therefore relative atomic mass ne 11 than 10. the answer communicates ideas clearly and coherently range of scientific terminology accurately spelling, puncuation and grammar are used with few e 	arer to v uses a

Questio n	Answer	Acceptable answers	Mark
Number 1(c)	Answer should include one idea from each list similarities both put • elements into groups / periods (1) • elements with similar properties in same group (1) • metals and non-metals in separately (1)		(2)
	 <u>differences</u> Mendeleev's table was arranged by relative atomic mass(1) had gaps (1) had fewer elements (1) did not include the noble gases (1) 	reverse argument for modern periodic table specific examples e.g germanium	

Question Number	Answer	Acceptable answers	Mark
2 (a)(i)	A, B and C	Mg Ca Au (any order) magnesium calcium gold (any order)	(1)

Question Number	Answer	Acceptable answers	Mark
2 (a)(ii)	A and B	Mg Ca (any order) magnesium calcium (any order)	(1)

Question Number	Answer	Acceptable answers	Mark
2 (b)	8 (protons)		(1)

Question Number	Answer	Acceptable answers	Mark
2(c)(i)	A : 10		(1)

Question Number	Answer	Acceptable answers	Mark
2(c) (ii)	<pre>(in 100 atoms) mass of mass number 20 atoms = 20 x 90 (1) mass of mass number 22 atoms = 22 x 10 (1) relative atomic mass = {(22 x 10) + (20 x 90)}/100 (=20.2) (1) OR 20 contributes = 90/100 x20(1) 22 contributes = 10/100 x22(1) relative atomic mass 90/100 x 20 + 10/100 x 22 (= 20.2) (1)</pre>	20.2 = 3 marks 21.8 = 2 marks (only 1 error made)	(3)

Question Number	Answer	Acceptable answers	Mark
2 (d)	An explanation linking any two of (the element is) group 0 / noble gas /unreactive / inert / does not react (1) {(has) 8 electrons / full} outer shell (1) prevents filament from reacting (1)	ignore 'not very reactive' does not {gain / lose / share} electrons	(2)

Question Number	Answer	Acceptable answers	Mark
3(a)	An explanation including the following points metal (1) 		
	 because {on left of / below} the line dividing metals and non-metals/because boron only non-metal in group 3 (1) 	correct statement relating to neighbouring metallic elements surrounded by metals	(2)

Question Number	Answer	Acceptable answers	Mark
3 (b)	2.8.3	283	(1)

Question Number	Answer	Acceptable answers	Mark
3 (c)(i)	A five protons		(1)

Question Number	Answer	Acceptable answers	Mark
3(c)(ii)	An explanation including the following points		
	 atoms of same element / same {number of protons / atomic number} (1) 	ignore electrons	
	 different {numbers of neutrons / mass numbers} (1) 		(2)

Question Number	Answer	Acceptable answers	Mark
3 (c)(iii)	more atoms have mass 11 (than 10) / ORA	boron 11 isotope more abundant OWTE	(1)