Question Number	Answer		Acceptable answers	Mark
1(a)(i)	particle proton neutron electron all 3 correct (2) any 1 or 2 correct	number 29 34 29		(2)

Question Number	Answer	Acceptable answers	Mark
1(a)(ii)	(copper atom has) 4 (shells of electrons)	Do not allow 4 electrons on the outer shell Do not allow 4 outer shells	(1)

Question Number	Answer	Acceptable answers	Mark
1(a)(iii)	An explanation linking	Maximum (1) if no mention of atom(s)/atomic	(2)
		Allow the marks if a specific example is given e.g. all chlorine atoms have 17 protons (1) but some have 18 neutrons and others have 20 neutrons (1)	
	 atoms of the (same) element/ atoms with the same { number of protons/atomic number} (1) 	Ignore any reference to numbers of electrons Ignore different forms of an element	
	 (but) different {numbers of neutrons/mass numbers} (1) 	Allow {more/less} neutrons than the {usual/original} atom (1) Do not allow more neutrons than protons Do not allow different (relative) atomic masses	

Question	Answer	Acceptable answers	Mark
iedmuni			(3)
1(a)(iv)	• (in 100 atoms)	63.6 with no working (3)	(3)
	mass of copper-63 atoms =		
	63 x 70 / 63 x 0.7 / 63 x 7 (1)	63.5/64 with no working (0)	
	(= 4410 / 44.1 / 441)		
		Allow correct working shown to	
	 mass of copper-65 atoms = 	calculate 63.6 then final answer is	
	65 x 30 / 65 x 0.3 / 65 x 3 (1)	rounded to 64 (3)	
	(= 1950 / 19.5 / 195)		
		Note: correct working shown to	
	 relative atomic mass = 	calculate 63.6 then final answer is	
	$(63 \times 70 + (65 \times 30) / 4410 +$	incorrectly rounded to 63 5/63 (2)	
	1950		
	100 100	lanore any unit e.a. a	
	100 100 100 100 100 100 100 100 100 100		
	(Allow TE for third mark	
	10	a different age used the wrong	
	10	e.g ii percentages used the wrong	
		way round 64.4 scores (1)	

Question Number	Answer	Acceptable answers	Mark
1(b)(i)		Reject any reference to a covalent bond or sharing electrons (0)	(2)
	• two electrons/ 2e ⁽⁻⁾ (1)	$Cu \rightarrow Cu^{2+} + 2e^{(-)}$ or $Cu - 2e^{(-)} \rightarrow Cu^{2+}$ (2) Allow +2 for charge	
	 {loses/gives away} electrons (1) 	Allow transfers electrons to another atom (1) Allow electrons taken away (1) Ignore electrons are missing Ignore references to the nitrate ion/other non-metals Ignore references to full outer shell	

Question Number	Answer	Acceptable answers	Mark
1(b)(ii)	Cu(NO ₃) ₂	Formula must be totally correct including subscripts, letter case and brackets	(1)
		Allow Cu ²⁺ (NO ₃ ⁻) ₂ Ignore any balancing numbers in front of formula Ignore any working/attempted equation to find the formula	

Question Number	Answers				Acceptable Answers	Mark
2 (a)		relative mass	relative charge	position in atom	ignore units reject relative mass of proton: +1/1+	
	proton	1	(+1)	in nucleus	for relative mass of electron:	
	neutron	(1)	0	(in nucleus)	anything smaller than 1/1500/0.00067 (almost) 0/negligible/very	
	electron	1/183 7	-1	in shells	small for relative charge on	
	all 6 corre 4 or 5 cor	ect (3) rect (2)			neutron: none/no charge/neutral	
	2 or 3 cor	rect (1)			for position of electron in an atom: in orbits / orbitals / energy levels / around the nucleus /outside the nucleus ignoro rings	
					ignore inner/outer	(3)

Question Number	Answers	Acceptable Answers	Mark
2 (b)	D equal numbers of protons and electrons		(1)

Question	Answers	Acceptable Answers	Mark
Number			
2 (c)(i)	Са	Reject CA / ca /cA	(1)
		ignore calcium	

Question Number	Answers	Acceptable Answers	Mark
2 (c)(ii)	0	ignore any negative charge on the O ignore oxygen reject: oxide/O ₂	(1)

Question	Answers	Acceptable Answers	Mark
Number			
2 (d)(i)	13	Allow correct working even if	(1)
		wrong answer	
~			

Question	Answers	Acceptable Answers	Mark
Number			
2 (d)(ii)	DAIN		(1)

Question Number	Answers			Acceptable Answers	Mark
3 (a)(i)	number of protons	chlorine- 35 17	chlorine- 37 17		
	number of neutrons number of electrons	18	17		
	the four 1 the 18 and	7s (1) d 20 (1)			(2)

Question Number	Answers	Acceptable Answers	Mark
3 (a) (ii)	An explanation linking M1 average (mass of atoms/isotopes present) (1) M2 more chlorine-35 than chlorine-37 / higher { percentage / abundance} of CI-35 / lower { percentage / abundance} of CI- 37 / (1)	mean ignore weight 75% chlorine-35 / 25% chlorine- 37/ chlorine-35 and chlorine-37 in ratio 3:1 / correct calculation to obtain 35.5 (2) eg[(75x35) + (25x37)]/100	(2)
			(-)

Question Number	Answers	Acceptable Answers	Mark
3 (b)	Diagram showing one carbon and four chlorines	use of dots or crosses or mixture of both	
	four pairs of electrons shared between the carbon and chlorine atoms (1)	ignore inner shells even if incorrect ignore symbols	
	fully correct (1)		(2)

Questi	stion Indicative Content		Mark
Numbe	er		
Qvvc	3(C)	Note: (carbon to carbon) strong bonds is given in question	
		Diamond:	
		Uses and Properties	
		 in cutting tools/engraving drill bit jewellery diamond very hard/strong 	
		 high melting point 	
		Explanations	
		 giant molecular/covalent each carbon atom bonded to four other carbon atoms three dimensional structure to break it lots of bonds would need to be broken would need lot of energy/force 	
		Graphite:	
		Uses and Properties	
		 to make electrodes a lubricant sporting equipment in pencils/drawing graphite conducts electricity soft 	
		Explanations	
		 giant molecular/covalent each carbon atom bonded to three other carbon atoms each carbon atom has a free electron delocalised electrons (delocalised) electrons move to carry current layers of carbon atoms weak forces/bonds between layers/sheets so layers/sheets can slide/rub off or over each other 	
			(6)

Question Number	Answer	Acceptable answers	Mark
4(a)(i)	СТ		(1)

Question	Answer	Acceptable answers	Mark
Number			
4(a)(ii)	C Q and S		(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(i)	number of protons (in nucleus of atom)	ignore number of electrons eg number of protons and electrons worth (1)	(1)

Question Number	Answer	Acceptable answers	Mark
4(b)(ii)	 An explanation including (atoms of) both contain 5 /same number of protons/same atomic number (1) 	ignore electrons	
	 boron-10 atoms contain 5 neutrons but boron-11 atoms contain 6 neutrons / different numbers of neutrons/ different mass number (1) 	boron-11 atoms contain 1 more neutron / boron-10 atoms contain 1 less neutron	(2)

Question Number	Answer	Acceptable answers	Mark
4(c)(i)	 An explanation including the following M1 {average/mean} mass (of atoms of an element) (1) 	For M1 reject weight reject if mass of molecule reject if mass of neutrons and protons	
	 M2 compared to {1/12 mass carbon-12 (atom)/ (mass of) carbon-12 (atom) taken as 12} (1) 	any reference to carbon-12 scores mark	(2)

Question Number	Answer	Acceptable answers	Mark
4(c)(ii)	[19.7 x 10] (1) +[80.3 x 11] (1) /100 (1) (=10.8) [0.197 x10] (1) + [0.803 x11] (1) = [1.97 + 8.83] (1) (=10.8)	If no working shown 10.8(03) worth 3 marks	(3)