Question number	Answer	Notes	Marks
1 (a)	$\mathrm{I}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{ICl}$	ACCEPT halves and multiples	1
(b) (i)	M1 rate of forward reaction = rate of backwards reaction M2 concentrations of reactants/ products remain constant	ACCEPT both reactions occur at the same rate IGNORE forward reaction $=$ backwards reaction ACCEPT amounts/masses for concentrations ACCEPT don't change/stay for remain IGNORE concentrations/ amounts of reactants and products are the same/are equal ALLOW colour remains constant	2
	M1 equilibrium has shifted to the left / equilibrium has shifted to the ICl side / equilibrium has shifted to the reactants side OR more ICI has been produced / more reactants have been produced	IGNORE references to Le Chatelier's principle e.g. an increase in temperature favours the endothermic reaction	2
	M2 an increase in temperature shifts the equilibrium in the endothermic direction	ACCEPT 'therefore the (backward) reaction is endothermic' for M2 if M1 has been awarded	

Question number	Answer	Accept	Reject	Marks
2 (a)	any two from: - forward and backward reactions (still) occurring - concentrations/amounts of reactants/products/components remain constant - rate of forward reaction $=$ rate of reverse reaction I GNORE concentrations/amounts of reactants and products are the same I GNORE reaction is reversible/goes both ways, OWTTE I GNORE references to le Chatelier	both reactions (still) occurring stay the same in place of remain constant		2
(b) (i) (ii)	M1 - (increase in temperature) decrease(s) M2 - (increase in pressure) increase(s) M1 - (forward) reaction is exothermic/gives out heat OR reverse reaction is endothermic/takes in heat M2 - fewer (gas) molecules/particles on right hand side OR fewer moles (of gas) on right hand side I GNORE references to volumes I GNORE references to le Chatelier's principle I GNORE references to reverse reaction lowers the temperature I GNORE references to forward reaction reduces the pressure	less/lower(s)/drop(s)/gets smaller more/raise(s)/higher/gets bigger reverse argument shifts to side with fewer (gas) molecules/fewer moles (of gas)	atoms	1 1 1 1

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
\[
2 \text { (c) (i) }
\] \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
(the position of) equilibrium is not established/reached \\
M1 - (the mixture of gases is) cooled \\
M2 - ammonia liquefies / condenses recycled / reused / recirculated
\end{tabular} \& \begin{tabular}{l}
temperature is decreased \\
put (back) into the reaction chamber used again (in the process)
\end{tabular} \& \& \begin{tabular}{l}
\[
1
\] \\
1 \\
1 \\
1
\end{tabular} \\
\hline (d) \& heat(ing) / energy costs would be higher \& yield (of ammonia) would decrease \& \& 1 \\
\hline \begin{tabular}{l}
(e) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 \(\quad M_{r}\left(N_{2}\right)=28\) \\
M2 \(112000 \div 28(=4000) / 112000 \div\) \\
M3 8 000/M2 \(\times 2\) \\
\(1200 / 15 \%\) of M3
\end{tabular} \& \begin{tabular}{l}
28 anywhere in the calculation \\
\(112 \div 28) \quad 2=8\) for 2 marks \\
\((112000 \div 14) \times 2=16000\) for 2 marks \\
Correct final answer without working for 3 marks
\end{tabular} \& \& 1
1
1

1 \\
\hline \& \& \& Total \& 15 \\
\hline
\end{tabular}

Question number	Answer	Notes	Marks
3 (a)	M1 (goes darker because) more NO_{2} is formed M2 as equilibrium/reaction shifts to left M3 because there are more moles/molecules (of gas) on the left hand side	allow 'moves backwards/in reverse direction' accept 'fewer moles/molecules on the right hand side' ignore references to Le Chatelier's principle	3
(b) (i)	M1 the equilibrium/reaction has shifted to the right / more $\mathrm{N}_{2} \mathrm{O}_{4}$ has been formed M2 a decrease in temperature shifts the equilibrium in the exothermic direction	exothermic' for $\mathbf{M 2}$ if $\mathbf{M 1}$ has been awarded accept 'therefore the (forward) reaction is (yes: because) bond making is exothermic/releases (thermal/heat) energy	

Question number	Answer	Accept	Reject	Marks
4 (a)	Any two from: M1 both forward and backwards reactions are occurring M2 amounts/concentrations of reactants and products stay the same/pressure (of gas mixture) stays the same M3 rate of forward reaction $=$ rate of backwards reaction	masses for amounts	are the same	2
(b) (i)	M1 increase M2 (forward) reaction is exothermic/gives out heat M2 dep on M1 I GNORE references to le Chatelier's principle and to reaction tries to decrease the temperature/equilibrium shifts to right	reverse reaction is endothermic	equilibrium shifts to left	1 1
(b) ii)	M1 increase M2 fewer moles/molecules (of gas) on right (hand side) M2 dep on M1 I GNORE references to le Chatelier's principle and to reaction tries to decrease the pressure/equilibrium shifts to right	more molecules on left (hand side)	equilibrium shifts to left	$\begin{aligned} & 1 \\ & 1 \end{aligned}$

(c) (i)	$2 \mathrm{CH}_{3} \mathrm{OH}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$ M1 formulae M2 balancing M2 dep on M1 I GNORE catalyst if on both sides or above arrow I GNORE state symbols	multiples and halves		2
(ii)	M1 - a substance that increases the rate of a reaction I GNORE alters the rate and any reference to enzymes M2 and is chemically unchanged (at the end of the reaction) I GNORE references to takes no part in the reaction	mass does not change without being used up		1 1
(iii)	M1 provides an alternative reaction path(way)/route/mechanism M2 (alternative path has a) lower activation energy [Activation energy can be described, e.g. the minimum energy needed (by colliding particles) for reaction to occur]	M1 molecules adsorb on/stick to the catalyst		1 1
	MAX 1 if any mention of particles gaining energy	M2 weakens the bonds in the reactant molecules		
(d)	$2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$ M1 all formulae correct M2 balanced M2 dep on M1 IGNORE state symbols	multiples and halves correct equation for methanal for one mark		2
			Total	14

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
5 \text { a }
\] \\
b
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}
\] \\
M1 (increased pressure) has no effect (on yield) \\
M2 because equal numbers of (gas) moles/molecules on each side \\
M1 (at higher temperature equilibrium position shifts to left so yield of hydrogen) decreases \\
M2 because (forward) reaction is exothermic
\end{tabular} \& \begin{tabular}{l}
Accept fractions and multiples \\
I gnore no effect on other factors eg equilibrium (position) \\
Do not award M2 if M1 is incorrect \\
Accept because backward reaction is endothermic \\
Accept because reaction moves in the endothermic direction \\
Ignore references to Le Chatelier's principle eg increase in temperature favours the endothermic reaction \\
Do not award M2 if M1 is incorrect
\end{tabular} \& 1
2

2 \\
\hline
\end{tabular}

Question number	Answer	Notes	Marks
5 d	M1 identifying reaction 3 or reaction 4 M2 a correct explanation for either eg in reaction 3, there is gain of hydrogen in reaction 4, there is gain of oxygen	Ignore reactions 5 and 6 Accept increase in oxidation number of $\mathrm{H} /$ changes from 0 to (+)1 Accept decrease in oxidation number of $\mathrm{N} /$ changes from 0 to -3 Ignore references to gain/loss of electrons Accept decrease in oxidation number of $\mathrm{O} /$ changes from 0 to - 2 Accept increase in oxidation number of $\mathrm{N} /$ changes from -3 to (+)2 Ignore references to gain/loss of electrons Ignore other explanations Allow: Identifying both Reaction 3 and 4 only for 2 marks Ignore any explanations	2

e	M1 $n\left(\mathrm{NH}_{3}\right)=\frac{34 \times 1000}{17}=2000(\mathrm{~mol})$ M2 $\quad M_{r}\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=80$ M3 mass $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=80 \times 2000=160000 \mathrm{~g} / 160 \mathrm{~kg}$ OR M1 $\quad M_{r}\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=80$ M2 (so) $17\left(\mathrm{~kg} \mathrm{NH}_{3}\right)$ gives $80\left(\mathrm{~kg} \mathrm{NH} \mathrm{NO}_{3}\right)$ M3 (so) $34\left(\mathrm{~kg} \mathrm{NH}_{3}\right)$ gives $\frac{80}{17} \times 34=160 \mathrm{~kg}$ $\text { / } 160000 \mathrm{~g}$	Correct final answer with or without working scores 3 marks Do not award M3 if unit missing or incorrect Mark CQ throughout	3

	Ques num			Answer	Notes	Marks
6	a	i	M1	air / atmosphere		1
			M2	water / natural gas / hydrocarbons	Allow methane	1
		ii	M1	iron / Fe	Ignore iron oxide Accept phonetic spellings Do not penalise other included numbers - eg $\mathrm{Fe}(\mathrm{II}) / \mathrm{Fe}(\mathrm{III}) / \mathrm{Fe}^{2+} /$ Fe^{3+}	1
		iii	M1	$450{ }^{\circ} \mathrm{C}$	Accept temperature of $350 \circ \mathrm{C}$ to $550{ }^{\circ} \mathrm{C}$ or temperatures in K If range given, both values must be within acceptable range Accept pressure of 150 atm to 250 atm or pressures in Pa Unit needed for mark If two conditions given, both must be correct	1
			M2	$200 \text { atm(ospheres) }$		
		iv	M1	cooled / temperature lowered ammonia liquefies / condenses		1
			M2		M1 and M2 are independent Do not award M2 if implication that other gases condense	1

Question number				Answer	Notes	Marks
6	d	i	M1	60		1
		ii	M1	setting out correct division of each \% by A_{r} OR 2.5, 5 and 3.75	Award 0 for whole question if division by atomic numbers / wrong way up / multiplication used If molecular masses used for all three elements, no M1, but can award M2 and M3	1
			M2	division by smallest (gives $1: 2: 1.5$)	No penalty for subsequently rounding 1.5 to 2 if clear they have divided by smallest	1
			M3	$\mathrm{N}_{2} \mathrm{H}_{4} \mathrm{O}_{3}$	Accept elements in any order Allow $\mathrm{NH}_{4} \mathrm{NO}_{3}$ If \% O wrong or missing, only M1 and M2 can score	1
		iii	M1	ammonium nitrate	Accept phonetic spellings Do not accept ammonia in place of ammonium Do not accept nitrite or nitride in place of nitrate Ignore all formulae	1

Total 18 marks

