Question number	Answer	Notes	Marks
	M1 $n\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)=\frac{0.300 \times 20}{1000} \quad$ OR $0.006(0) \mathrm{mol}$ $\left(=n\left(\mathrm{SO}_{2}\right)\right)$ M2 Mr of $\mathrm{SO}_{2}=32+(2 \times 16) \mathrm{OR} 64$ M3 mass of $\mathrm{SO}_{2}=(0.006 \times 64)=0.38(\mathrm{~g})$ M1 mass of SO_{2} in $1 \mathrm{dm}^{3}=\frac{0.38(4) \times 1000}{50}$ $=7.6(8)(\mathrm{g})$ M2 this is less than 100 so no SO_{2} will escape OR M1 volume of solvent is $50 \mathrm{~cm}^{3}$ which would dissolve $(100 / 20)=5(\mathrm{~g})$ M2 $0.384(\mathrm{~g})$ is less than $5(\mathrm{~g})$ so no SO_{2} would escape	Mark CQ throughout Accept any number of sig fig Correct final answer with or without marking scores 3 marks M1 CQ on M3 in ai Accept any number of sig fig If candidate value for M1 is greater than 100, award M2 for opposite argument If no answer to M1 then M2 cannot be awarded If answers based on volume of solvent $=20 \mathrm{~cm}^{3}$ eg $20 \mathrm{~cm}^{3}$ which would dissolve $(100 / 50)=$ 2(g) $0.384(\mathrm{~g})$ is less than $2(\mathrm{~g})$ so no SO_{2} would escape worth 1 mark	3

Question number			Answer	Notes	Marks
1 d	i		times are (very) short	Accept reaction happens too/very/so quickly (so hard to time accurately/precisely) I gnore reaction is quicker I gnore hard(er) to measure rate Allow human reaction time becomes significant Allow references to shorter times producing greater percentage (measurement) uncertainties/errors	2
			heat loss greater	Accept heat loss occurs more quickly Accept difficult to maintain a higher temperature/keep temperature constant I gnore references to evaporation occurring	
	ii		more collisions/ particles have energy equal to/greater than the activation energy	I gnore particles have more (kinetic) energy I gnore harder/more vigorous collisions I gnore references to speed of particles	
		M2 (per	(therefore there are) more successful collisions second)	if state activation energy is lowered scores 0/2 references to concentration scores 0/2	2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\[
2 a
\] \\
b i
\end{tabular} \& \begin{tabular}{l}
\[
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}
\] \\
M1 (increased pressure) has no effect (on yield) \\
M2 because equal numbers of (gas) moles/molecules on each side \\
M1 (at higher temperature equilibrium position shifts to left so yield of hydrogen) decreases \\
M2 because (forward) reaction is exothermic
\end{tabular} \& \begin{tabular}{l}
Accept fractions and multiples \\
I gnore no effect on other factors eg equilibrium (position) \\
Do not award M2 if M1 is incorrect \\
Accept because backward reaction is endothermic \\
Accept because reaction moves in the endothermic direction \\
Ignore references to Le Chatelier's principle eg increase in temperature favours the endothermic reaction \\
Do not award M2 if M1 is incorrect
\end{tabular} \& 1
2

2 \\
\hline
\end{tabular}

Question number	Answer	Notes	Marks
2 d	M1 identifying reaction 3 or reaction 4 M2 a correct explanation for either eg in reaction 3, there is gain of hydrogen in reaction 4, there is gain of oxygen	Ignore reactions 5 and 6 Accept increase in oxidation number of $\mathrm{H} /$ changes from 0 to (+)1 Accept decrease in oxidation number of $\mathrm{N} /$ changes from 0 to -3 I gnore references to gain/loss of electrons Accept decrease in oxidation number of $\mathrm{O} /$ changes from 0 to - 2 Accept increase in oxidation number of $\mathrm{N} /$ changes from -3 to (+)2 I gnore references to gain/loss of electrons I gnore other explanations Allow: Identifying both Reaction 3 and 4 only for 2 marks I gnore any explanations	2

e	```M1 \(n\left(\mathrm{NH}_{3}\right)=\frac{34 \times 1000}{17}=2000(\mathrm{~mol})\) M2 \(\quad M_{r}\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=80\) M3 mass \(\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=80 \times 2000=160000 \mathrm{~g} / 160 \mathrm{~kg}\) OR M1 \(\quad M_{r}\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)=80\) M2 (so) \(17\left(\mathrm{~kg} \mathrm{NH}_{3}\right)\) gives \(80\left(\mathrm{~kg} \mathrm{NH} \mathrm{NOO}_{3}\right)\) M3 (so) \(34\left(\mathrm{~kg} \mathrm{NH}_{3}\right)\) gives \(\frac{80}{17} \times 34=160 \mathrm{~kg}\) / 160000 g```	Correct final answer with or without working scores 3 marks Do not award M3 if unit missing or incorrect Mark CQ throughout	3

Question number	Answer	Notes	Marks
3 a	M1 volume M2 concentration	Ignore amount of solution for both, but accept amount in cm^{3} for M1 Reject volume of gases Allow mass of solution I gnore strength Ignore temperature / pressure Accept in either order	2
b i	B D		1 1
c	M1 filter (and dry) and weigh solid/A/it M2 mass is (still) $1 \mathrm{~g} /$ mass is unchanged	Mark M1 and M2 independently Accept separate/remove solid/ A /it from reaction mixture and weigh it Accept reverse argument, eg if it was a reactant, the mass would decrease	2

Question number			Answer	Notes	Marks
4	a		weigh (solid) before and after mass unchanged	M1 and M2 are independent	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
	b	ii	```(total) volume / temperature mass / amount OR state of subdivision / particle size / surface area ref to hydrogen peroxide / solution / liquid / water / reactant / spray AND ref to stopping escaping / spitting (out) / leaving / OWTTE```	Ignore amount Reject idea of evaporation	
	c	ii	oxygen/ $\mathrm{O}_{2} /$ gas escapes/given off rate OR reaction slowing (down) 8 (minutes)	Ignore O Reject reference to wrong gas Accept loss of mass per unit time	1 1

Question number		Answer	Notes	Marks
4	d	i	T	
ii	$0.8(0)$ loss in mass is double/twice that for $0.4(0) / \mathrm{S}$ OR S loses 0.4 g and T loses 0.8 g	Accept $150-149.6=0.4$ and $150-149.2=$ 0.8 but not just $150-149.2=0.8$ $M 2 ~ D E P ~ o n ~ M 1 ~$	1	
1				

Question number	Answer	Notes	Marks	
4	f	more particles/molecules (in a given volume) collide more frequently / more collisions per unit time/per second/per minute	Ignore greater chance of collision Max 1 if reference to greater energy / moving faster	1

(Total for Question $4=16$ marks)

