1 The table gives information about some of the elements in Group 7 of the Periodic Table.

Element	Colour	Melting point in °C	Boiling point in °C
fluorine yellow		-220	-188
chlorine		-101	-35
bromine	red-brown	-7	59
iodine	grey	114	

(a)	WI	nat is the colour of chlorine at room temperature?	(1)
×	A	black	
×	В	blue	
×	C	green	
×	D	orange	
(b)		e trend in the boiling points for these elements is similar to the trend in their elting points.	
	Pre	edict a value for the boiling point of iodine.	(4)
			(1) °(
(c)	As	tatine is another element in Group 7.	
	Pre	edict its colour and physical state at room temperature.	(2)
coloui			(2)
pnysic	.di S	tate	

(d)		e elements in Group 7 have similar chemical reactions because they have the me number of	(1)
×	Α	electrons	(1)
×	В	electron shells	
×	C	outer electrons	
×	D	protons	
(e)	A s	student wrote these statements about the reactions of the Group 7 elements.	
	•	The reactivity of the elements decreases down the group.	
	•	The elements form ions with a single positive charge.	
	•	The formula of an astatine molecule is At ₂	
	•	The equation for the reaction between chlorine and potassium bromide solution is $\text{Cl}_2 + 2\text{NaBr} \rightarrow 2\text{NaCl} + \text{Br}_2$	
	•	In the reaction between bromine and potassium iodide, bromine acts as a reducing agent.	
	Th	ree of the statements contain one incorrect word.	
		emplete the table to show each incorrect word and the correct word that should	t
	be	used to replace it.	(3)
		Incorrect word Correct word	
		(Total for Question1 = 8 ma	rks)

- **2** A teacher demonstrates, in a fume cupboard, two experiments to show the movement of particles.
 - (a) In the first experiment she places some liquid bromine at the bottom of a gas jar. She then places another gas jar containing air on top of it, as shown in the diagram.

The diagram shows the apparatus at the start, after a few minutes and at the end of the experiment.

Place crosses (\boxtimes) in **two** boxes to show which statements are correct about this experiment.

(2)

- **A** All the air particles in the upper gas jar stay there.
- **B** Bromine and air react to form bromine oxide.
- C Bromine has a darker colour than air.
- D Bromine vapour diffuses upwards.
- E Liquid bromine sublimes during the experiment.
- **F** The concentration of bromine in the lower gas jar does not change.

(b) In the second experiment, she soaks tw and places them at opposite ends of a g with bungs.	o pieces of cotton wool in different liquids glass tube. She immediately seals the tube
The diagram shows the apparatus at the	e start of the experiment.
cotton wool	cotton wool

During the experiment a white ring appears in the tube.

State whether the white ring appears at A, B or C.	(1)
) Explain your choice.	(2)
 (Total for Question 2 = 5 mai	·ks)

3	A sample of a chlorofluorocarbon (CFC) contains 0.24 g of carbon, 0.38 g of fluorine
	and 1.42 g of chlorine.

(a) (i) Show, by calculation, that the empirical formula of the CFC is ${\sf CFCl}_2$

(3)

(ii) The relative formula mass of the CFC is 204.

Deduce the molecular formula of the CFC.

(2)

molecular formula

(b) The displayed formula of another CFC is

Draw a dot and cross diagram of this CFC.

Show only the outer electrons.

(2)

- 4 This question is about elements in Group 7 of the Periodic Table.
 - (a) Complete the table to show the physical state at room temperature of fluorine and astatine, and the colour of liquid bromine.

(2)

Element	Colour	Physical state at room temperature
fluorine	pale yellow	
chlorine	pale green	gas
bromine		liquid
iodine	dark grey	solid
astatine	black	

(b) Chlorine reacts with hydrogen to form hydrogen chloride.

A piece of magnesium ribbon is added to hydrogen chloride in three separate experiments under different conditions.

The table below shows the observations made under these different conditions.

Experiment	Conditions	Observations		
1 Hydrogen chloride gas		No visible change		
2 Hydrogen chloride dissolved in water		The magnesium ribbon gets smaller and bubbles are seen		
Hydrogen chloride dissolved in methylbenzene		No visible change		

(i)	Write the formulae of two ions formed in the solution produced in experiment 2	2. (2)
	Positive ion	
	Negative ion	

(ii) Identify the gas formed in experiment 2 and give a test for	or it. (2)
gas	
test	
(iii) Silver nitrate solution and dilute nitric acid are added to produced in experiment 2.	the solution
State what is observed and name the substance respons	ible for this observation.
Explain why dilute nitric acid is added.	(9)
	(3)
observation	
substance responsible	
explanation	
(iv) Explain why there is no reaction in experiment 3.	
(iv) Explain why there is no reaction in experiment s.	(1)
(Total fo	r Question 4 = 10 marks)

5 The halogens are elements in Group 7 of the Periodic Table.

The halogens react with metals to form compounds called halides.

Table 1 shows information about some halogens and their halides.

Halogen	Halogen Appearance at room temperature		Melting point in °C
chlorine	green gas	lithium chloride	605
bromine	red-brown liquid	sodium bromide	747
iodine	grey solid	potassium iodide	681

Table 1

(a)	(i)	Predict the	physical	state of	fluorine	at room	temperature.
-----	-----	-------------	----------	----------	----------	---------	--------------

(1)

(ii) Predict how the colour of a statine at room temperature compares with the colour of iodine.

(1)

(b) Each of the halides in table 1 was dissolved in water to form a solution.

A sample of each of the halogens was then added to some of the halide solutions.

Table 2 shows the results.

ما الماليا	Halogen added			
Halide	Chlorine	Bromine	lodine	
lithium chloride	not done	no reaction	no reaction	
sodium bromide	orange solution	not done	no reaction	
potassium iodide	brown solution	brown solution	not done	

Table 2

(i)	Suggest why there is no reason to add chlorine to lithium chloride solution.	
		(1)

(ii)	Why was there no reaction when iodine was added to sodium bromide solution	n? (1)
(iii)	Name the substance with the brown colour that formed when chlorine was added to potassium iodide solution.	(1)
(iv)	The reaction between bromine and potassium iodide solution is a displacement reaction.	
	What is the correct description of this reaction?	(1)
×	A bromide displaces iodide	
X	B bromine displaces iodide	
×	C bromide displaces iodine	
×	D bromine displaces iodine	
(v)	Complete the chemical equation for the reaction between chlorine and potassium bromide solution.	(1)
	$Cl_2 + 2KBr \rightarrow \dots + \dots$	
	(Total for Question 5 = 7 ma	rks)