Question number	Answer	Notes	Marks
1 (a)	Metal Highest temperature aluminium 42.0 copper 25.0 iron 29.0 magnesium 46.5 zinc 31.5	M1 for magnesium and zinc M2 and M3 for other 3 metals – 1 mark for 2 correct, 2 marks for all 3 correct Penalise missing trailing 0 once only	3
(b) (i)	it/copper does not react (with sulfuric acid)	mark csq on table in (a) ACCEPT there is no reaction / the (sulfuric) acid does not react (with copper) IGNORE copper is unreactive	1
(c)	M1 (change/rise in temperature would be) less M2 because there is a larger volume/mass of solution/liquid (to be heated) OR same (amount of) energy distributed to a larger number of particles	ACCEPT halved IGNORE any quoted temperatures ACCEPT there is more/twice as much solution/liquid to be heated ALLOW acid for solution/liquid REJECT the magnesium has to react with more acid M2 dep on M1	2

Question	Answer	Notes	Marks
number 2 (a)	propane		1
		ACCEPT H. C	1
(b)	C ₄ H ₁₀	ACCEPT H ₁₀ C ₄	1
		penalise incorrect use of symbols and subscripts	
		REJECT structural and displayed formulae	
(c)	W X Y	all three required	1
(d)	CH ₂	ACCEPT H ₂ C	1
(-)	Na (marked) and	REJECT C _n H _{2n}	2
(e)	M1 (unsaturated) contains a (carbon to carbon) double bond	ACCEPT multiple bonds IGNORE refs to single bonds	3
	M2 (hydrocarbon) (compound/molecule/substance) contains (the elements/atoms) hydrogen and carbon	REJECT element/atom/ mixture for compound/ molecule/substance REJECT ions/molecules for elements/atoms	
	M3only	M3 dep on mention of hydrogen & carbon in M2 ACCEPT other equivalents e.g. solely, just, exclusively	
(f) (i)	H H H	ACCEPT bromine in any position ACCEPT multiple substitutions ACCEPT correct displayed formula given as a product of an equation IGNORE any structural formula eg CH ₃ CH ₂ CH ₂ Br or molecular formula IGNORE H-Br	1
(ii)	UV / ultraviolet light/radiation	IGNORE references to heat / (high) temperature / (high) pressure	

Question Answer		Notes	Marks
number 3 (a)	M1 (Fe) (Ti) (O) 36.8 31.6 31.6 56 48 16	Division by atomic number scores 0	3
	M2 0.66 0.66 1.98	ACCEPT any number of	
	M3 1 1 3	sig figs except one ALLOW 0.65, 0.65, 1.97	
	OR		
	M1 calculation of M_r of FeTiO ₃ =152		
	M2 expression for % of <u>each</u> element e.g. Fe: $56 \div 152 \times 100\%$		
	M3 evaluation to show these equal 36.8% Fe, 31.6% Ti, 31.6% O		
(b)	M1 (element oxidised) – carbon / C	IGNORE refs to electron loss	2
	M2 (reason) – (it has) gained/ combined with oxygen / forms carbon dioxide	ACCEPT oxidation state/ number increases ACCEPT oxidation state/ number changes from 0	
	M2 dep on M1	to (+)4	
(c) (i)	$TiCl_4 + 2Mg \rightarrow Ti + 2MgCl_2$	ACCEPT multiples and halves	2
	M1 all formulae correct	IGNORE state symbols even if incorrect	
	M2 balanced		1
(ii)	titanium / Ti / magnesium / Mg reacts with oxygen OR	IGNORE refs to oxidation ACCEPT forms an oxide	
	titanium / Ti / magnesium / Mg reacts with nitrogen	ACCEPT forms a nitride	
(iii)	magnesium chloride will dissolve more quickly / to help the magnesium chloride to dissolve / more of the magnesium chloride is in contact with the water	IGNORE to speed up the reaction IGNORE refs to increasing surface area	1

(d) (i)	M1 positive ions/cations/nuclei and delocalised electrons	IGNORE metal ions ALLOW sea of electrons IGNORE free electrons	2
	M2 attract (one another)	any refs to ionic bonding,	
	M2 dep on M1	covalent bonding or IMFs scores zero	
(ii)	(delocalised) electrons can flow/move (through structure)/are mobile (when voltage/pd is applied)	IGNORE carry charge	1

Question number			Answer Notes		Marks
4	а	i	$\mathbf{2NdF}_3 + \mathbf{3Ca} \rightarrow \mathbf{2Nd} + \mathbf{3CaF}_2$ Accept fractions and multiples		1
		ii	calcium fluoride AND neodymium fluoride (in either order)	Accept formulae	1
		iii	ionic	Accept electrovalent Ignore giant Ignore electron transfer Reject covalent bonding/ intermolecular forces	1
		iv	Nd_2O_3	penalise incorrect use of symbols and subscripts	1

b	M1	(neodymium ions in) layers/rows/planes/sheets/OWTTE	Accept atoms/cations/particles for ions Reject molecules	
	M2	slide/slip (over each other)	Allow OWTTE, eg flow/shift/roll/move	
			M2 DEP on mention of EITHER layers or equivalent OR mention of ions or equivalent	
			Do not award M2 if molecules/protons/electrons/nuclei in place of ions etc	4
			If reference to ionic bonding / covalent bonding /molecules / intermolecular forces, no marks	
	М3	delocalised electrons OR sea of electrons	Not just electrons Ignore free electrons	
	M4 (whe	(can) flow/travel/move (through structure) / are mobile n voltage/pd is applied)	Ignore carry charge M4 DEP on M3 or near miss	

_	estion mber	Answer	Accept	Reject	Marks
5 (a)) (i)	Any two from:			2
	(ii)	M1 – ductile			1
		M2 – good conductor <u>of electricity</u> Apply list principle Answers can be given in any order			1
(t	b) (i)	strong(er) IGNORE references to density and rusting	other correct descriptions		1
	(ii)	lower density / resists corrosion IGNORE lighter	does not rust greater strength to weight ratio		1
(0	c) (i)	heat / thermal energy / heat energy is given out OR transferred/lost to the surroundings IGNORE references to bond formation and breaking	produced produces an increase in temperature it gets hot		1
	(ii)	M1 - (aluminium/it is) more reactive	iron is less reactive		1
		M2 – (aluminium/it) displaces iron (from its oxide)	replaces it/aluminium takes oxygen away from iron (oxide)		1
		M2 DEP on M1			

(iii)	M1 – aluminium	loses (three) electrons /oxidation number increases	1	
	M2 – gains oxygen M2 DEP on M1	combines with oxygen / forms aluminium oxide	1	
	IGNORE references to magnesium			
(d)	temperature reached ≥ m.pt of iron IGNORE exothermic / heat produced / lots of energy produced	high temperature reached / gets very hot	1	

(Total marks for Question 5 = 12 marks)