1 A student set up the following apparatus.

- (a) The reaction between magnesium and hydrochloric acid forms hydrogen gas.
 - (i) State **one** observation the student would make during this reaction.

(1)

(ii) Identify the other product formed during this reaction.

(1)

- (b) The hydrogen gas burns in air to form steam. The steam changes to water on the surface of the round flask.
 - (i) Write a chemical equation for the burning of hydrogen in air.

(2)

(ii) What name is used for the process in which steam changes into water?

(1)

The product of this reaction has the formula $CuSO_4.5H_2O$	
(i) State the final colour of the copper(II) sulfate in this reacti	(1)
(ii) The colour change of the anhydrous copper(II) sulfate shows that the	ne liquid contains wa
Describe a test to show that the water is pure.	(2)
	(2)
(Total for Question	on 1 8 marks)

2	Thi	is qu	uestion is about hydrogen (H ₂) and	d water.			
	(a)	Ну	drogen is a gas at room temperat	ure. It exists a	s simple mole	cules.	
		(i)	Draw a dot and cross diagram to	show the arra	ingement of th	ne electrons in	a
			hydrogen molecule.				(1)
		(ii)	Explain why hydrogen has a very	low boiling p	oint.		(2)
	(b)	Th	e symbols for the three isotopes o	of hydrogen ar	e		
			¹ H	² H	³ H		
		(i)	State what is meant by the term	isotopes.			(2)
							. ,
		(ii)	Complete the table to show the each of the three isotopes of hyd		otons, neutron	s and electron	s in
							(3)
	Isotope						
				¹H	2 H	3 H	
			number of protons				
			number of neutrons				
			number of electrons				

(c)	When hydrogen burns in oxygen, heat energy is transferred to the surroundings.	
	(i) State the name given to a reaction in which heat energy is transferred to the surroundings.	
		(1)
	(ii) Write a chemical equation to represent the reaction that takes place when hydrogen burns in oxygen.	(2)
	(iii) Describe a chemical test to show that the product is water.	(2)
	(iv) Describe a physical test to show that the product is pure water.	(2)

(Total for Question 2 = 15 marks)

- **3** A student adds dilute sulfuric acid to a beaker containing calcium chloride solution. He obtains a mixture containing a precipitate of calcium sulfate in a solution of hydrochloric acid.
 - (a) Complete the equation for this reaction by inserting state symbols.

 $CaCl_2(.....) + H_2SO_4(.....) \rightarrow CaSO_4(.....) + 2HCI(.....)$

(b) The student uses this apparatus to separate the mixture into a residue and a filtrate.

Draw a diagram to show how he should assemble the apparatus for the filtration.

(2)

(1)

	(Total for Question 3 = 10 ma	rks)
		(2)
(e)	The calcium sulfate residue he obtains is impure because it contains some hydrock Describe how he can obtain a pure dry sample of calcium sulfate from this residue	
	Suggest why the student does not need to add dilute nitric acid in the test.	(1)
	(iii) He reads in a textbook that dilute nitric acid should be added before the silver solution in the test.	nitrate
	(ii) State the name of the substance responsible for this observation.	(1)
	(i) State what he would observe in this test.	(1)
(d) The student tests the filtrate for chloride ions by adding silver nitrate solution.	
	(ii) Suggest why this ion is present in the filtrate.	(1)
	(i) Identify the ion responsible for this colour.	(1)
(C)	brick-red colour.	

PhysicsAndMathsTutor.com

- 4 This question is about elements in Group 7 of the Periodic Table.
 - (a) Complete the table to show the physical state at room temperature of fluorine and astatine, and the colour of liquid bromine.

(2)

Element	Colour	Physical state at room temperature
fluorine	pale yellow	
chlorine	pale green	gas
bromine		liquid
iodine	dark grey	solid
astatine	black	

(b) Chlorine reacts with hydrogen to form hydrogen chloride.

A piece of magnesium ribbon is added to hydrogen chloride in three separate experiments under different conditions.

The table below shows the observations made under these different conditions.

Experiment	Conditions	Observations
1	Hydrogen chloride gas	No visible change
2	Hydrogen chloride dissolved in water	The magnesium ribbon gets smaller and bubbles are seen
3	Hydrogen chloride dissolved in methylbenzene	No visible change

(i)	Write the formulae of two ions formed in the solution produced in experiment 2	2. (2)
	Positive ion	
	Negative ion	

(ii) Identify the gas formed in experiment 2 and give a test for it.	(2)
gas	
test	
(iii) Silver nitrate solution and dilute nitric acid are added to the solution produced in experiment 2.	on
State what is observed and name the substance responsible for this	s observation.
Explain why dilute nitric acid is added.	(2)
	(3)
observation	
substance responsible	
explanation	
(iv) Explain why there is no reaction in experiment 3.	
(iv) Explain willy there is no reaction in experiment s.	(1)
(Total for Question	n 4 = 10 marks)

5 The diagram shows how aluminium is extracted in industry.

(a) (i) Name the process used to extract aluminium.

(1)

(ii) Identify the element used to make the electrodes labelled $\boldsymbol{G}.$

(1)

(iii) State whether electrode ${\bf H}$ is positive or negative.

(1)

(iv) Liquid ${\bf L}$ contains aluminium oxide and one other substance.

Name this other substance and give **one** reason for its use in the extraction of aluminium.

(2)

Other substance

Reason for use

	(b) The product formed at electrode G reacts with the electrode to form carbon monoxide and carbon dioxide.		
(i)	Identify this product.	(1)	
(ii)	State why carbon monoxide is poisonous.	(1)	
(iii)	Describe a simple chemical test, and its result, for carbon dioxide. Test	(2)	
	Result		

(c) The	uses of aluminium depend on its structure and physical properties.	
(i)	The strength of solid aluminium depends on the electrostatic force of attraction between two types of particle in its structure.	
	Name these two types of particle.	(2)
(ii)	and Aluminium is described as ductile because it can easily be pulled into a wire.	(2)
()	Explain, in terms of its structure, why it is ductile.	(2)
(iii)	Explain, in terms of its structure, why aluminium is a good conductor of electricity.	(2)
(iv)	State a property that makes aluminium suitable for manufacturing aircraft bodies.	(1)
	(Total for Question 5 = 16 mar	·ks)