Question number	Expected answer	Accept	Reject	Marks
1 (a)	Giant (structure / lattice / atomic / molecular) Covalent Idea that (covalent) bonds are broken (Covalent bonds) are strong / many bonds (are broken) / lots of { energy/heat} required NB No penalty for referring to graphite	Macromolecular	Max 2 for mentioning of ionic or metallic bonding or Intermolecular forces Bonds loosened	1 1 1
(b)	Layers slide / slip / move over each other IGNORE particles in layers such as atoms, but REJECT if ions / molecules / electrons for first mark only Weak (intermolecular forces of) <u>attraction</u> between layers / weak van der Waals (forces of attraction) between layers	Sheets / planes slide Any indication that the forces are those of attraction, e.g. forces overcome / forces are broken / forces hold the layers together	Rows slide Any reference to <u>bonds</u> between layers / molecules	1
(c)	Delocalised electrons (which) move / mobile / flow IGNORE references to "carrying" charge / current		Refs to atoms / ions / molecules scores 0/2	1

1 (d)	Any two from:			
	Not a giant structure IGNORE simple molecular Weak intermolecular (forces of) <u>attraction</u> / weak (forces of) <u>attraction</u> between molecules / weak van der Waals (forces of attraction) between molecules No covalent bonds break (when melting)	Smaller molecules / simpler structure than diamond Any indication that the forces are those of attraction, e.g. forces <u>overcome</u> / forces <u>broken</u> / forces <u>hold</u> the molecules together	MAX 1 for any mention of covalent bonds are broken in Buckminster fullerene Any reference to bonds between molecules	2
		First and third marking points can be awarded for correct comparisons between the two structures, e.g. buckminsterfullerene is simple molecular whereas diamond is giant covalent scores the first mark; weak intermolecular forces of attraction in buckminsterfullerene are broken as opposed to the covalent bonds in diamond (scores the 3 rd mark, as well as the 2nd)		

Total 10 Marks

Question number	Answer	Accept	Reject	Marks
2 (a)	D (a molecule)			1
(b)	A (covalent)			1
(c)	NH ₃	H ₃ N		1

Total 3 marks

Qu	uestio umbe	on er	Answer		Notes	Marks	
3	(a)		Substance ammonia hydrogen chloride oxygen magnesium oxide	Element or compound compound (compound) element compound	Type of bonding covalent (covalent)	Ignore qualifiers for covalent, eg polar / dative All 6 correct = 3 marks 5 or 4 correct = 2 marks 3 or 2 correct = 1 mark 1 or 0 correct = 0 marks	3
	(b)		B (MgO)				1
	(c)		B (g)				1
						Total for Question	n 3 5