1 The structures of six organic compounds are shown. Α В C D Ε (a) Give the name of F. (b) Identify two of the compounds that are members of the same homologous series. Give the general formula of this homologous series. compounds general formula [2] (c) Which two compounds are isomers of each other? Explain why they are isomers. compounds explanation [3]

(d) Explain why B is an unsaturated hydrocarbon.

(e)	Describe how D is manufactured from B . Give a chemical equation for the reaction.
	[3]
	[3]
(f)	Compound A forms an addition polymer.
	Draw two repeat units of the addition polymer formed from A .

[2]

[Total: 13]

_	<i>(</i>)	Α Ι				e 11 .		
2	(a)	Αn	ydrocarbon	nas	tne	Tollowing	structurai	tormula

(i) State the molecular formula and the empirical formula of this hydrocarbon. molecular formula empirical formula [2] Draw the structural formula of an isomer of the above hydrocarbon. [1] (iii) Explain why these two hydrocarbons are isomers. (iv) Are these two hydrocarbons members of the same homologous series? Give a reason for your choice. (b) Alkenes can be made from alkanes by cracking. (i) Explain the term *cracking*. (ii) One mole of an alkane, when cracked, produced one mole of hexane, C_6H_{14} , and two moles of ethene. What is the molecular formula of the original alkane?

PhysicsAndMathsTutor.com......[1]

(c)	Alkenes	are used in	log	vmerisation	reactions	and	addition	reactions
101	/ 111101100	are acca iii	P 0 1	ymonoanom	100000000	alla	addition	1 Cacher

(i) Draw the structural formula of the product formed by the addition polymerisation of but-2-ene. Its formula is given below.

(ii)	Give the name and structural formula of the addition product formed from ethene and bromine.
	name
	structural formula

[2]

[3]

[Total: 14]

Pro	opano	pic acid is a carboxylic acid. Its formula is $\mathrm{CH_3-CH_2-COOH}$.	
(a)	Pro	panoic acid is the third member of the homologous series of carboxylic acids.	
	(i)	Give the name and structural formula of the fourth member of this series.	
		name	
		formula	[2]
	(ii)	Members of a homologous series have very similar chemical properties. State three other characteristics of a homologous series.	
			[3]
(b)	Car	boxylic acids can be made by the oxidation of alcohols.	
	(i)	Draw the structural formula of the alcohol which can be oxidised to propanoic acid. Show all atoms and bonds.	
			[1]
	(ii)	Name a reagent, other than oxygen, which can oxidise alcohols to carboxylic acids.	
			[2]

3

(c)	•	ollowing equation s acid are called p		reactions of propa	anoic acid.	
	(i) zinc + pro	opanoic acid $ ightarrow$.			+ hydrogen	[1]
	(ii) calcium + oxide	propanoic → acid			+	[1]
	(iii) LiOH + C	:H ₃ CH ₂ COOH →		+		[1]
(d)	to react compl acids. The san	nesium was adde etely was measune volume of acid atical. In one expe	red. This experin was used in eac riment the reaction concentration	nent was repeate h experiment and n was carried out temperature	d using different the pieces of m at a different ten time	t aqueous agnesium
			in mol/dm ³	/°C	/minutes	
	Α	propanoic	1.0	20	5	
	В	propanoic	1.0	30	3	
	С	propanoic	0.5	20	8	
	D	hydrochloric	1.0	20	1	
	(i) Why is the	owing in terms of rate in experiment	nt C slower than t	he rate in experim	nent A ?	[2
((iii) Why is the	rate in experime		e rate in experim		[2

anes are a family of saturated hydrocarbons. Their reactions include combustion, cracking ostitution.
What is meant by the term <i>hydrocarbon</i> ?
What is meant by the term saturated?
[1]
What is the general formula for the homologous series of alkanes?
Calculate the mass of one mole of an alkane with 14 carbon atoms.
e complete combustion of hydrocarbons produces carbon dioxide and water only.
Write the equation for the complete combustion of nonane, C_9H_{20} .
[2
20 cm³ of a gaseous hydrocarbon was mixed with an excess of oxygen, 200 cm³. The mixture was ignited. After cooling, 40 cm³ of oxygen and 100 cm³ of carbon dioxide remained. Deduce the formula of the hydrocarbon and the equation for its combustion. Al volumes were measured at r.t.p
[3]
k

(d)	Cra	cking is used to obtain short-chain alkanes, alkenes and hydrogen from long-chain alkanes.
	(i)	Give a use for each of the three products listed above.
		short-chain alkanes
		alkenes
		hydrogen[3]
	(ii)	Write an equation for the cracking of decane, $C_{10}H_{22}$, which produces two different alkenes and hydrogen as the only products.
		[1]
(e)	Chl	orine reacts with propane in a substitution reaction to form 1-chloropropane.
		$CH_3-CH_2-CH_3 + Cl_2 \rightarrow CH_3-CH_2-CH_2-Cl + HCl$
	(i)	What is the essential condition for the above reaction?
		[1]
	(ii)	There is more than one possible substitution reaction between chlorine and propane. Suggest the structural formula of a different product.
		[1]
		[Total: 16]