Question	Answer	Marks
1 (a)	buta	1
(b)	compounds: E and F; general formula: $\mathrm{C}_{n} \mathrm{H}_{2 n+2}$; OR compounds: A and B; general formula: $\mathrm{C}_{n} \mathrm{H}_{2 n}$;	$\begin{array}{ll} & \mathbf{2} \\ 1 & \\ 1 & \\ 1 & \\ 1 & \end{array}$
(c)	compounds: E and F; explanation: same molecular formula/contain the same number of atoms each element; different structures/ different structural formulae/different arrangement of atoms;	
(d)	contains a double bond/not all bonds are single bonds; C and H only;	$\begin{array}{ll} & \mathbf{2} \\ 1 & \\ 1 & \end{array}$
(e)	$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} ;$ any 2 from: high temperature $/ 220^{\circ} \mathrm{C}-350^{\circ} \mathrm{C}$; high pressure / 60 atm- 70 atm; phosphoric acid catalyst;	
(f)	 M1 correct carbon structure with only single bonds; M2 continuation bonds;	2

(ii) Any unambiguous structural formula of methyl cyclopropane or but-1-ene or but-2-ene or methyl propene
(iii) M1 same molecular formula

M2 different structural formulae or different structures or different arrangement of atoms
(iv) If ' No ':
one an alkane, the other an alkene
or
one is saturated / has single bonds, the other is unsaturated / has a double bond ignore: references to the 'functional group'

If 'yes'
both alkanes or both saturated ignore: references to the 'functional group'
(b) (i) M1 Action of heat or catalyst or thermal decomposition (on an alkane) Ignore steam. Ignore pressure.

M2 Long-chained molecules or alkanes form smaller molecules (not smaller fraction) or forms smaller alkenes (or alkanes)
(ii) $\mathrm{C}_{10} \mathrm{H}_{22}$
(c) (i) M1 Correct structure of one repeat unit

M2 Continuation bonds COND on M1
M3 use of brackets and subscript ' n ' COND on M1 and M2

(ii) dibromoethane or 1,2-dibromoethane
(a (i) butanoic/butyric acid (1)
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}$ (1)
(ii) any three from:
(same) general formula (1)
(consecutive members) differ by CH_{2} (1)
same functional group (1)
common methods of preparation (1)
physical properties vary in predictable manner/show trends/gradually change
or example of a physical property variation i.e. melting point/boiling point/ volatility (1)
(b) (i) displayed formula of propan-1-ol, all bonds shown separately (1)
(ii) acidified (1)
potassium manganate(VII)/potassium permanganate/ KMnO_{4} or potassium dichromate(VI) $/ \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} /$ potassium dichromate (1)
(c) (i) zinc + propanoic acid \rightarrow zinc propanoate (+ hydrogen) (1)
(ii) calcium oxide + propanoic acid \rightarrow calcium propanoate + water (1)
(iii) $\mathrm{LiOH}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \underline{C H}_{2} \underline{\mathrm{COOLi}^{2}}+\mathrm{H}_{2} \underline{O}$ (1)
(d) (i) concentration (of acid in C) is less/halved or concentration of A is more/ doubled. (1)
less collisions or more collisions in A (than in C) (1)
(ii) (higher temperature in B particles/molecules/atoms) move faster/have more energy/more have E_{a} or (particles/molecules/atoms) in A move slower/have less energy/less have E_{a} (1)
more collisions or less collisions in A (than in B) (1)
(iii) It (D) has strong (acid) and A has weak acid/(D) stronger/(D) ionises more/ (D) dissociates mo or \underline{A} is weaker/ \underline{A} ionises less/ \underline{A} dissociates less (1)

It (D) has higher concentration of hydrogen ions or \underline{A} has a lower concentration of hydrogen ions (1)
more collisions (in D) or fewer collisions in A (1)

4 (a (i) C and H only (1)
(ii) only single bonds (1)
(b) $\quad \mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}(1)$
(ii) $\mathrm{C}_{14} \mathrm{H}_{30}(1)$
$(14 \times 12)+30=198(\mathrm{~g})(1)$
(c) $\quad \mathrm{C}_{9} \mathrm{H}_{20}+14 \mathrm{O}_{2} \rightarrow 9 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$ (2)
(ii) Volume ratio
$\underset{20}{\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}(\mathrm{g})}+\underset{160}{\mathrm{O}_{2}(\mathrm{~g})} \rightarrow \underset{100}{\mathrm{CO}_{2}(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$$\quad$ all in cm^{3}

1 | 1 | 8 | 5 |
| :--- | :--- | :--- |

$\mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{C}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
For evidence of method (1)
for equation as above (2)
(d) alkanes in petrol/fuel/solvent (1)
alkenes to make alcohols/plastics/polymers/solvents (1)
hydrogen to make ammonia/fuel/fuel cells, etc. (1)
(ii) a correct equation for example:
$\mathrm{C}_{10} \mathrm{H}_{22} \rightarrow \mathrm{C}_{8} \mathrm{H}_{16}+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2}$ (1)
(e) light or lead tetraethyl/catalyst/high temperature (1)
(ii) $\mathrm{CH}_{3}-\mathrm{CHCl}-\mathrm{CH}_{3}(1)$

