1(a)	large surface area/large area of contact/large surface;		
	more (successful) collisions (between catalyst and gases or between reacting gases) OR more active sites OR faster reaction/increase rate/increase speed;	2	I activation energy Second mark must be comparative
(b)	decre temperature/temperature below 450 °C/quoted temperature below 450 °C; increase pressure/pressure above 200 atm/quoted pressure above 200 atm;	2	I comments about concentration I low temperature and high pressure. Both answers must be comparative I explanations
(c)	decreased temperature would reduce rate/reaction slower/too slow;		A takes long <u>er</u> I slow (unqualified)
	increased <u>pressure</u> expensive/uneconomic/safety risks/leaks/explosions/ yield or rate good enough at lower pressure/strong pipes needed/thick pipes needed/sturdy pipes needed/requires a lot of energy;	2	I answers that do not refer to decreased temperature and increased pressure e.g. it is too expensive unless this is linked with pressure

2 **(a**

(a) (i)	pressure 150–300 atmospheres/atm (1)	
	temperature accept in range 370 to 470 <u>°C</u> (1)	
	iron (catalyst) (1)	
	balanced equation $N_2 + 3H_2 \Rightarrow 2NH_3$ (1)	
	equilibrium/reversible (1)	[5]
(ii)	potassium/K (1)	
	phosphorus/P (1)	[2]
(b) (i)	burn fossil fuels/burn fuels containing sulfur/burn compounds containin sulfur/burn ores containing sulfur/roast metal sulfides/burn metal sulfide (1)	-
	sulfur dioxide/SO ² (formed) (1)	
	(form) sulfuric/H2SO4/sulfurous acid/H2SO3 (1)	
	OR	
	nitrogen and oxygen (in air) react at high temperatures/in jet engines/ca engines/lightning. (1)	ar
	(form) oxides of nitrogen (1)	
	(form) nitric acid/HNO $_3$ /nitrous acid/HNO $_2$ (1)	[3]
(ii) a	any two from: calcium oxide/lime/quicklime/CaO (1)	
ļ	calcium hydroxide/Ca(OH) ₂ /lime/slaked lime/limewater (1) calcium carbonate/CaCO ₃ /limestone/chalk/marble (1) guidance: 'lime' can only be credited once.	[2]
		[Total: 12]

3	(a (i)	any metal above zinc $Mg \rightarrow Mg^{2+} + 2e$	[1]
	(ii)	$Zn + 2Ag^+ \rightarrow Zn^{2+} + 2Ag$ Note : not balanced only [1]	[2]
	(iii)	because they can accept or gain electrons / change into atoms or can be reduced	[1]
	(iv)	Ag⁺ or silver charge not essential but if given must be correct	[1]
	(v)	Ag ⁺ and Cu ²⁺ or silver and copper charge not essential but if given must be correct	[1]

(b) Cu Sn Cd Zn (<i>i.e. all</i> 4 <i>in correct order</i>) relates order to voltage	[1] [1]
one relevant comment from:	[1]
higher reactivity metals are the negative electrode / copper is least re positive electrode because copper would have the lowest voltage / co	

bigger the difference in reactivity, the bigger the voltage / zinc has highest voltage because it is most reactive / more reactive metals have higher voltage

4	(a (i	fractional distillation (liquid) air	[1] [1]
	(ii)	cracking / heat in presence of catalyst of alkane / petroleum to give an alkene and hydrogen	[1] [1] [1]
		OR: electrolysis (1) named electrolyte (1) hydrogen at cathode (1)	
		OR: from methane (1) react water / steam (1) heat catalyst (1) only ACCEPT: water with methane or electrolysis	
	(b) (i) the pair with both graphs correct is C NOTE: mark (b)(ii) independent of (b)(i)	[1]
	(ii)	high pressure favours side with lower volume / fewer moles this is RHS / product / ammonia %NH ₃ / yield increases as pressure increases	[1] [1] [1]
		the forward reaction is exothermic exothermic reactions favoured by low temperatures %NH ₃ / yield decreases as temperature increases ACCEPT: reverse arguments	[1] [1] [1]
	(iii)	 increases reaction rate ACCEPT: reduces activation energy OR: decreases the amount of energy particles need to react OR: economic rate at lower temperature so higher yield 	[1] [1]
			[Total: 14]

4	(a	(i)	the (forward) reaction is endothermic	[1]
		(ii)	none volume of reactants and products the same ACCEPT : number of moles or molecules	[1] [1]
		(iii)	the reaction (between oxygen and nitric oxide) is <u>exothermic</u> high temperatures push equilibrium to left / high temperatures decrease yield of produ / low temperatures favour forward reaction	[1] icts [1]
		(iv)	$4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3$ not balanced = (1) only	[2]
		(v)	(cost of) high amount of electricity / energy	[1]
	(b)	(i)	contains more nitrogen	[1]
		(ii)	photosynthesis chlorophyll is catalyst / chlorophyll absorbs light carbon dioxide and water react to make glucose / carbohydrates / starch / sugar / named sugar	[1] [1] [1]
			[Total:	13]

5 (a) (making) fertilisers / nitric acid / nylon / refrigeration / explosives / cleaning products; [1]

(b)	wat	ane / named alkane; er / steam; t / catalyst;	[1] [1] [1]
	sug	electrolysis; gest suitable electrolyte; (allow: water) rogen at cathode;	[1] [1] [1]
	alka	cracking; ane / named alkane; t or catalyst	[1] [1] [1]
(c)		five from: er; (rate)	[1]
	moi	re collisions / molecules closer together / more particles per unit volume;	[1]
	•	lisions) more frequent / more often / more chance / more effective or successful isions / more collisions with Ea / increase rate of collisions;	[1]
	•	ner yield / moves (equilibrium) to RHS / more ammonia / to side of products / high ssure favours the reaction with less moles;	[1]
		s moles / molecules / volume on RHS ORA (can be implied in previous nments)	[1]
	-	n pressure means lower temperature can be used to achieve comparable rate is saving energy);	[1]
(d)	(i)	endothermic takes in / absorbs / uses / needs / gains energy / heat <u>and</u> exothermic gives out / loses energy / heat;	[1]
	(ii)	2328 (ignore + or –) / 6 × 388 (not evaluated);	[1]
		944 + 1308 / 2252 and endothermic and exothermic in table;	[1]
		2328>2252 or (–) 76 kJ;	[1]
		or energy of products / RHS > reactants / LHS or energy needed to break bonds < energy given out on formation of bonds.	401

[Total: 13]

6