1 (a (i)

(b)

(י)				-	-	
	aqueous	tin	manganese	silver	zinc	
	solution	Sn	Mn	Ag	Zn	
	tin(II) nitrate		R	NR	R	
	manganese(II) nitrate	NR		NR	NR	
	silver(I) nitrate	R			R	
	zinc nitrate	NR	R	NR		
	[1] for each ignore anything written in blank space					
(ii)	Sn + $2Ag^{+} \rightarrow Sn^{2+}$ + $2Ag$ all species correct [1] accept equation with Sn ⁴⁺					
(iii)	Mn to Mn ²⁺ need both sp	ecies				
()	electron loss or oxidation		creases			
(iv)	covered with oxide layer makes it unreactive or protects or aluminium oxide unreactive					
(potassium has one valer or loses one electron calcium has two valency	-				
	or loses two electrons	olocationic				
(ii)	potassium hydroxide \rightarrow i calcium hydroxide \rightarrow cal ACCEPT metal oxide		and water			

2	(a (i	air would react (with the magnesium or titanium) OR argon would not react (with the metals) NOT argon is inert	
	(ii) any metal higher than magnesium in reactivity series		[1]
	(iii	add water (to dissolve salt) filter or centrifuge	[1] [1]
	(b) (i	electron loss	[1]
	(ii	hydrogen	[1]
	(iii	oxygen chlorine	[1] [1]
	(iv	it cannot lose electrons (because) it receives electrons (from the battery)	[1] [1]
		OR reduction occurs at the cathode oxidation at the anode (not cathode)	[1] [1]
		OR electrons are "pushed" to rig preventing it from being oxidised	[1] [1]
		for comments of the type – rusting needs oxygen, it is formed on titanium not iron (NOT the idea that titanium is more reactive etc	ONLY [1]
 (v) SET 1 sacrificial protection is a cell does not need electricity cathodic protection is electrolysis cathodic protection needs electricity 			
	SET 2 sacrificial protection needs a more reactive metal (in contact with iron or steel) this metal corrodes instead of steel cathodic protection needs an inert electrode accept unreactive or less reactive an electrode has to be ONE comment from each set all comments about oxide layers and coating are neutral		

[Total: 12]

3	(a (i)	 (a (i) bleach for wood pulp or preserving food or sterilising or in wine making or as a refrigerant or in metallurgy or (liquid) sulphur dioxide is used in the petroleum industry 		
		or kill microbes(etc) or insecticide	[1]	
	(ii)		[1]	
		NOT burnt/burn in air/oxygen 450°C vanadium oxide catalyst (if oxidation state given has to be correct) or platinum	[1] [1]	
	vanadium oxide catalyst (if oxidation state given has to be correct) or platinun If four conditions are given which include high pressure then MAX [2] High pressure is incorrect MAX 10 atm.		נין	
	(iii)	ammonium sulphate or superphosphate or potassium sulphate or magnesium sulphate	[1]	
	(b) (vaporisation or boiling or evaporation condensation or liquefaction	[1]	
		NOTE order in which changes are given is not important NOT liquid => gas => liquid	[1]	
	(ii)	to get maximum yield of zinc or reduce all zinc oxide NOTE the above mark is awarded for why add excess carbon moves equilibrium to	[1]	
		right or to favours the products or removes CO_2 from equilibrium NOTE this mark is awarded for how does the addition of excess carbon give max yield of zinc	[1]	
		NOTE Allow any coherent explanation <u>flexibly</u> based on the above ideas EXAMPLES :		
		moves equilibrium to right [1] because carbon dioxide removed [1] to get maximum yield of zinc [1] as equilibrium moves to right [1] NOT just to make CO from CO ₂		
	(c)	$Zn^{2+} + 2e = Zn$	[1]	
	(ii)	$4OH - 4e = O_2 + 2H_2O$	[2	
		or $4OH = O_2 + 2H_2O + 4e$ or $2H_2O = 4H^+ + O_2 + 4e$		
		or $2H_2O - 4e = 4H^+ + O_2$ oxygen as product [1]		
	(iii)	sulphuric acid NOTE there are no alternative answers to the above	[1]	
	ma	event iron from rusting NOT with galvanising or sacrificial protection aking brass or making alloys NOT bronze actroplating or as an electrode in electrolysis		
	cells roofing			
	sacrificial protection coinage			
		VO uses	[2]	
		[Total	. IJ	

4	(a		· most reactive X and leas other responses [0]	st Y [1] ONLY	[2]
	(b)	o) magnesium W copper			[1] [1]
	(c)	(i)	goes "pop" with burning or mixed with air and ig NOT glowing splint		[1]
		(ii)	test and observable res universal indicator goes or pH paper goes blue or high pH, accept 13, 7	s blue 14	[1]
			or ammonium ion gives or with metallic cations NOT litmus ONLY accept - neutralis e.g. becomes warm.		[1]
	(iii) Group 1				[1]
		(iv)	electrolysis COND molten		[1] [1]
					[TOTAL = 10]
5	(a)	4 Ge atoms around 1 Ge Looks tetrahedral or stated to be			[1] [1]
	(b)	(i)	Graphite has layers COND that can move/sl	in	[1]
			or weak bonds between	•	[1]
			Graphite has delocalise	d/free/mobile electrons	[1]
		(ii)	property <u>and</u> use soft OR good conductor	lubricant or pencils electrodes or in electric motors	[1]
	(c)		CO_2 and SiO_2 or XO_2		[1]
		(ii)	CO_2 molecular or simple SiO ₂ macromolecular o	e molecules or simple covalent r giant covalent	[1] [1]
	(d)	(d) Ge ₂ H ₆		[1]	
					[TOTAL = 10]