AQA Chemistry GCSE

Required Practical 5 - Rate of Reaction Mark Scheme

Q1 (a) CaCO3 + 2HCl \rightarrow CaCl2 + H2O + CO2	(2)			
Allow 1 mark for correct formulae				
(b) Sensible scales, using at least half the grid for the points				
All points correct $\pm \frac{1}{2}$ small square Allow 1 mark if 8 or 9 of the points are correct				
Best fit line				
(c) steeper line to left of original	(1)			
line finishes at same overall volume of gas collected	(1)			
(d) mass lost of 2.2 (g)	(1)			
time taken of 270 s allow values in range $265 - 270$ 2.2 = 0.00814814				
270				
allow ecf for values given for mass and time 0.00815 (g / s) or 8.15 × 10^-3	(1)			
Allow 1 mark for correct calculation of value to 3 sig figs accept 0.00815 or 8.15 × 10^–3 with no working shown for 4 marks				
	(1)			
(e) correct tangent				
	(1)			
eg 0.35 / 50	(1) (1)			

0.007 allow values in range of 0.0065 – 0.0075			
7 × 10−3	(1)		
accept 7 × 10-3 with no working shown for 4 marks	(1)		
Q2 .(a) (delivery) tube sticks into the acid	(1)		
the acid would go into the water or the acid would leave the flask or go up the deli tube ignore no gas collected	very (1)		
 (b) any one from: bung not put in firmly / properly gas lost before bung put in leak from tube 	(1)		
(c) all of the acid has reacted	(1)		
(d) take more readings in range 0.34 g to 0.54 g 1 take more readings is insufficient ignore repeat			
(e) 95 / 24000 1 0.00396 or 3.96 × 10−3 accept 0.00396 or 3.96 × 10−3 with no working shown for 2 marks	(1)		
(f) use a pipette / burette to measure the acid because it is more accurate volume than a measuring cylinder or	(1)		
greater precision than a measuring cylinder or			
use a gas syringe to collect the gas so it will not dissolve in water or			
use a flask with a divider accept description of tube suspended inside flask so n gas escapes when bung removed	וס (1)		
(g) they should be collected because carbon dioxide is left in flask at end 1 and it has			

(g) they should be collected because carbon dioxide is left in flask at end 1 and it has the same volume as the air collected / displaced (1)

Q3(a) cotton wool	(1)
(b) all points correct	(1)
± ½ small square	(2)
Allow 1 mark if 5 or 6 of the points are correct best fit line	()
must not deviate towards anomalous point	(4)
(c) (mass) 2.1 (g)	(1)
allow ecf from drawn best fit line	
(time) 100 (s)	(1)
	(1)
(d) a gas is produced	(1)
which escapes from the flask	(')
(c)	(1)
(e) $9.85 = 0.0656$	
150	
	(1)
0.07 (g / s)	
allow ecf answer correctly calculated to 2 decimal places	(4)
(f) collect the gas in a gas syringe	(1)
	(1)
measured the volume of gas allow carbon dioxide for gas	
	(1)
allow for 1 mark collected gas or counted bubbles	

Q4

•(a) 36 cm ³			1	
(b)	all points co	prrect ±½ small square	2	
		allow 1 mark if 6 or 7 of the points are correct		
	2 best fit lin	nes drawn must not deviate towards anomalous point	2	
		allow 1 mark if 1 line correct		
	(c)	The bung was not pushed in firmly enough.	1	
		The measuring cylinder was not completely over the delivery tube.	1	
	(d)	as mass of lithium carbonate increases volume of gas produced increases	1	
		linear / (directly) proportional	1	

Q5.

.(a) sulfur / sulphur / S / S(s)

(b) as the temperature increases, the rate of reaction increases

allow two correct values for rate quoted (from graph) at different temperatures 1

1

1

2

1

the rate of increase increases or there is an exponential relationship

accept the rate of reaction increases slowly (from 20 °C to 50 °C) then increases more rapidly for **2** marks answer MUST be based on rate / speed of reaction

(c) (i) any two from:

- temperature (of the reactants)
- concentration of hydrochloric acid
- volume of hydrochloric acid
- volume of sodium thiosulfate
- the (size / darkness / thickness of the) cross
- total volume of solution.

if no other marks gained, allow **1** mark for: rate of stirring

OR

amount of hydrochloric acid / sodium thiosulfate **OR** volume of solution

 (ii) (because as the concentration increases) the number of particles per unit volume increases or particles are closer together.

idea of more particles in a given space is required for the first mark.

ignore references to area.

(therefore) the frequency of (successful) collisions increases

allow increased chance / probability of collisions

number of collisions increases is insufficient here.

must mention per unit time or frequency.

ignore speed of collisions.

if reference to space and time missing from M1 and M2 but they are otherwise correct, then award 1 mark.

Q6.

.(a) (i) the higher the temperature, the greater the rate

or at 40 °C rate is faster than at 20 °C accept the higher the temperature, the faster the reaction 1 (ii) 40 °C curve is steeper accept the 40 °C line becomes horizontal sooner accept at higher temperatures the reaction finishes sooner accept reaction finishes sooner at 40 °C accept at higher temperatures the gas is produced faster or correct comparison of data from the graph 1 (iii) 2 1 Concentration of acid (b) (i) Mass of marble chips 2 (ii) increases rate incorrect reference to energy = max 1 1 (because of) more frequent collisions (between particles) accept particles are more likely to collide ignore more collisions ignore more successful collisions 1 (c) any one from: . increases rate of reaction reduces energy required

- lower temperature can be used
- catalyst is not used up.

1 [8]

Q7

(a) (s) (aq) (aq) (g)

must be in this order 2 marks if all four correct 1 mark if 2 or 3 correct

(b) (i) 55

ignore units

(ii) 54

allow ecf from (b)(i)

(iii) 0.92

correct answer with or without working gains **2** marks ecf from volume in **(b)(i)** accept 2 d.p. up to calculator value

if answer incorrect, allow rate = (b)(i) / 60 for 1 mark

(c) (i) circle round point at (48,22)

(ii) problem (1) and explanation (1)
 explanation must give lower volume of gas or slower reaction
 ignore human error unless qualified

problem with bung

e.g. bung not placed in firmly / quickly enough

so gas lost

or

2

1

1

2

1

problem with reagent

e.g. acid was diluted or acid not replaced

so reaction slower

or

problem with temperature

e.g. temperature was lower than recorded temperature

so reaction slower

or

problem with measurement

e.g. length of magnesium less than 8 cm or timed for less than a minute

2

1

1

1

1

so less gas produced

(d) repeat the experiment (several times)

because anomalous results could be excluded

and then the mean can be determined / calculated

accept suggestion of alteration to method, which is explained as to why it would reduce the error, for **3** marks (e.g. place the magnesium in a container within the flask (1) so it can be tipped into the acid once the bung is in place (1). This will prevent anomalous results or gas loss (1)) ignore idea of more accurate gas syringe

ignore shorter time intervals

(e)

(i) use clean magnesium or use magnesium without oxide coating

(ii) either

measure the temperature of the acid before (adding magnesium)

1

1

1

[16]

and after adding magnesium

or

place the conical flask in a water bath (at 40 °C) (1)

compare results (1)

Q8.

(a)	(i) H ₂ O ₂ reactant correct	
	ignore any state symbols	1
	H ₂ O + O ₂ products correct	1
	$2H_2O_2 \rightarrow 2H_2O + O_2$ balanced	
	accept correct multiple	1
(ii)	glowing splint	1
	relights	
	accept 'bursts into flame'	
	do not accept a lighted splint burns brighter or faster	1

(b)	uncl	nanged				
		accept not used up or left (behind)			1	
1-2	(*)		1 - II - I			
(c)	(i)	gas syringe or measuring cylinder either with scale drawn or la	ibelled		1	
		the apparatus as drawn would work			1	
	(ii)	correct plotting of points				
		one mark to be deducted for each error			2	
		best fit graph line drawn (single line drawn)			1	
	(iii)	concentration of hydrogen peroxide decreases				
		accept less particles of hydrogen peroxide to collide				
		do not accept hydrogen peroxide gets used up	1			
	rate o	f reaction decreases accept reaction gets slower	1			
(iv)	any tv	vo from:				
	•	temperature				
	•	pressure				
	•	division of catalyst or manganese oxide				
		do not accept any other factors	2	[15]		