
Questions are for both separate science and combined science students unless indicated in the question

Q1.

This question is about substances used to make windows and window frames.

Figure 1 shows a window.

Figure 1

(a) Glass is made by heating sand with **two** other materials.

Which two other materials are used to make glass?

Tick (√) two boxes. (separate only)

Clay	
Graphite	0
Limestone	
Sodium carbonate	
Sodium hydroxide	3

(2)

Window frames need to be:

- easy to install
- resistant to damage.

The polymers poly(chloroethene) and HDPE are used to make window frames.

(2)

(2)

Table 1 shows information about poly(chloroethene) and HDPE.

Table 1

Property	Poly(chloroethene)	HDPE
Density in g/cm ³	1.4	0.92
Relative strength	72	25

(b)	Suggest one advantage of using poly(chloroethene) compared with HDPE
	to make window frames

Give one reason for your answer. (separate only)

Jse ⁻	Γabl	e 1.			
------------------	------	------	--	--	--

Advantage			
•			

Reason			

Give one reason for your answer. (separate only)

Use Table 1.

to make window frames.

Advantage _____

Reason

(d) **Figure 2** shows the displayed structural formula of poly(chloroethene).

Figure 2

$$\begin{pmatrix} H & Cl \\ -C & -C \\ ---- \\ H & H \end{pmatrix}_{n}$$

Which monomer is used to make poly(chloroethene)?

Tick (\checkmark) one box. (separate only)

	H H C == C	
	H H H Cl	
	c = c	
	H H Cl Cl	
	C = C 	
	CI CI C = C CI CI	
Chl	oring gog is used to produce poly/	ablaraeth an a)
	orine gas is used to produce poly(•
Des	scribe a test to identify chlorine ga	S.
Giv	e the result of the test.	
Tes	et	
Res	sult	
Wo	od can be used instead of polyme	rs to make window frames.
•	Polymers are unreactive.	
•	Polymers are produced from cr	ude oil.
•	Wood breaks down in wet cond	litions.
•	Wood is produced from trees.	
	ggest one advantage of using poly od to make window frames.	mers and one advantage of using

Advantage of wood	
	(2)
Window frames can also be made from an alloy of aluminium.	

(g) 6.00 kg of the alloy is used to make a window frame.

Table 2 shows the mass of each element in 6.00 kg of the alloy.

Table 2

Element	Mass in kg
Aluminium	5.94
Magnesium	0.04
Silicon	0.02

Percentage of aluminium =	
	%
hy is an alloy used instead of pure aluminium to make window frame	s?

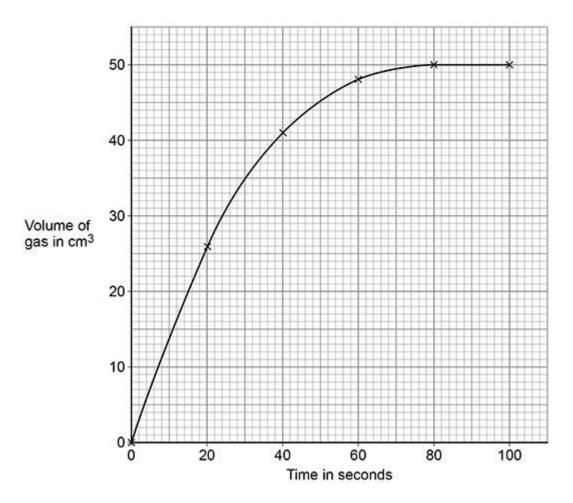
Q2.

This question is about the rate of the reaction between hydrochloric acid and calcium carbonate.

A student investigated the effect of changing the size of calcium carbonate lumps on the rate of this reaction.

This is the method used.

- 1. Pour hydrochloric acid into a conical flask up to the 50 cm³ line.
- 2. Add 10.0 g of small calcium carbonate lumps to the conical flask.
- 3. Attach a gas syringe to the conical flask.
- 4. Measure the volume of gas produced every 20 seconds for 100 seconds.
- 5. Repeat steps 1 to 4 using 10.0 g of large calcium carbonate lumps.


(1)

(a)	The student used the 50 cm ³ line on volume of hydrochloric acid.	the conical flask to measure the	
	Suggest a piece of equipment the si measurement of volume more accur		
<i>(</i> 1.)			(1)
(b)	Carbon dioxide gas is produced in the and calcium carbonate.	ne reaction between hydrochloric acid	
	Which test is used to identify carbor	n dioxide gas?	
	Tick (✓) one box.		
	A burning splint pops		
	A glowing splint relights		
	Damp litmus paper is bleached		
	Limewater turns milky		

The table below shows the student's results for large calcium carbonate lumps.

Time in seconds	Volume of gas in cm ³
0	0
20	16
40	30
60	40
80	46
100	48

The graph below shows the student's results for small calcium carbonate lumps.

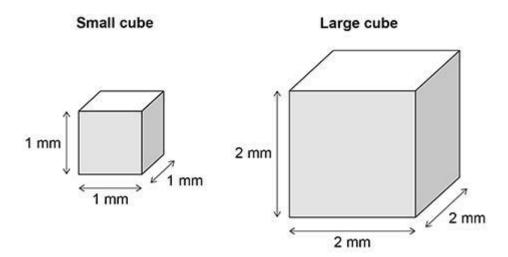
(c) Complete the graph above.

You should:

- plot the data for large calcium carbonate lumps from the table above on the graph paper
- draw a line of best fit for large calcium carbonate lumps.

(3)

(d) Determine the mean rate of reaction using **small** calcium carbonate lumps between 0 seconds and 60 seconds.


Use the equation:

mean rate of reaction =
$$\frac{\text{volume of gas produced}}{\text{time taken}}$$

Use the graph above.

	Mean rate of reaction =	cm³/s
Describe what happens carbonate lumps:	s to the volume of gas collected using sma	all calcium
• between 0 and 20) seconds	
 between 80 and 1 	00 seconds.	
Use the graph above.		
Between 0 and 20 seco	onds	
Between 80 and 100 se	econds	
The balance used to we error.	eigh 10.0 g of calcium carbonate lumps ca	iused an
The balance always rea	ad 0.2 g before being used.	
What type of error was	caused by the balance?	
Tick (✓) one box.		
Human error		
Random error		
Systematic error		

The diagram shows the dimensions of two cubes of calcium carbonate.

(g) A cube of calcium carbonate has six faces.

Calculate the total surface area of the large cube of calcium carbonate.

(3)

(h) The large cube of calcium carbonate was divided into eight smaller cubes.

The eight smaller cubes have a greater total surface area than the one large cube.

Compare the rate of reaction when using the eight smaller cubes with the rate of reaction when using the large cube.

Complete the sentence.

Choose the answer from the box.

faster	slower	the same
--------	--------	----------

The rate of reaction of the eight smaller cubes is ______.

(1)

(Total 15 marks)

	2
u	3.

This question is about algae.

A student:

- placed algae in water containing dissolved carbon dioxide
- shone bright light on the algae.

from glucose. (separate only
from glucose. (separate only
(2
(2 ula of an amino acid
•
cule in the diagram
(1
oroduce a polypeptide
only)

	(e)	Scientists think that algae may have used gases in Earth's early atmosphere.	
		Algae need an element to produce the molecule in the diagram above which is not present in water or carbon dioxide.	
		Which two gases from Earth's early atmosphere could have provided this element?	
		and	(2)
	(f)	The development and function of algae are controlled by a naturally occurring polymer.	
		The image below represents the shape and structure of this polymer.	
		Describe the shape and structure of this polymer. (separate only)	
		(Total 11 n	(3) narks)
Q4	Ī		
Q4		ne students investigated the rate of decomposition of hydrogen peroxide.	
	The	equation for the reaction is:	
		hydrogen peroxide → water + oxygen	
	(a)	Complete the sentence.	
		Choose an answer from the box.	
		a burning splint a glowing splint	

	damp litmus paper	limewater	
The studen	its tested the gas produced to	o show that it was oxy	gen.
The studen	its used		
			(1)
	igated the effect of the particl te of the reaction.	e size of a manganes	.,
This is the metho	od used.		
1. Measure 25 cm	m³ hydrogen peroxide solutio	n into a conical flask.	
2. Add some fine	manganese dioxide powder	to the conical flask.	
3. Measure the v	olume of oxygen produced e	very 30 seconds for 10) minutes.
4. Repeat steps 1	1 to 3 two more times.		
5. Repeat steps 1	1 to 4 with coarse manganes	e dioxide lumps.	
(b) The method	d student A used did not give	e repeatable results.	
How could	student A make the results re	epeatable?	
Tick (✓) on	e box.		
Student A minutes.	should make measurements	every 2	
Student A dioxide.	should measure the mass of	manganese	
Student A	should use 50 cm3 hydroger	n peroxide.	
Student A flask.	should use a beaker instead	of a conical	
			(1)
Student B used a	a method which gave repeata	able results.	
(c) How could s	student B improve the accura	acy of these results?	
Tick (√) on	e box.		
Calculate a	a mean but do not include an	y anomalous	

(1)

	alculat sults.	te a mean	but do not	include the	e first set of		
	ecord ar char	rd the results in a table and plot the results on a hart.					
	ecord ne grap		s in a table	and plot th	e results or	n a	
The figur lumps.	re belo	ow shows	student B 's	s results for	· coarse ma	anganese d	ioxide
Volume o oxygen ir		60 50 40 30 20 10 0	100	200	300	400	500
				Т	ime in s		
(d) Calculate the mean rate of reaction between 30 and 250 seconds for coarse manganese dioxide lumps.					nds for		
Us	e the t	figure and	I the equati	on:			
	Mean rate of reaction = $\frac{\text{Volume of oxygen formed}}{\text{Time taken}}$						
Giv	ve you	ır answer	to 3 signific	ant figures			
Vo	lume (of oxygen	formed				
Tin	Time taken						

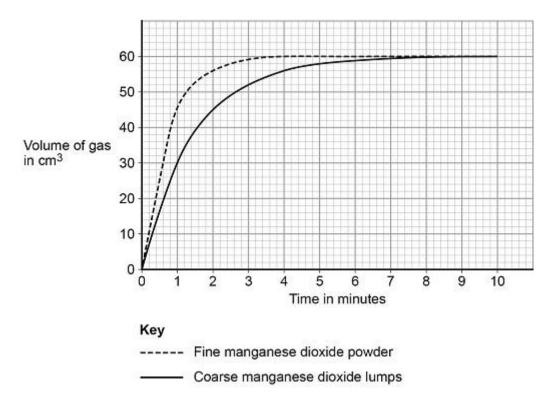
		Mean rate of reaction =	cm ³ /s
,	· 0 \	Fine manageness disvide neurope produces a higher rate of r	(4)
(e)	Fine manganese dioxide powder produces a higher rate of recoarse manganese dioxide lumps.	eaction than
		Sketch on the figure above the results you would expect for experiment with fine manganese dioxide powder.	student B 's
			(2)
(f)	Hydrogen peroxide molecules collide with manganese dioxid during the reaction.	le particles
		Why does fine manganese dioxide powder produce a higher reaction than coarse manganese dioxide lumps?	rate of
		Tick (✓) one box.	
		Fine manganese dioxide powder has a larger surface area.	
		Fine manganese dioxide powder has larger particles.	
		Fine manganese dioxide powder produces less frequent collisions.	
			(1) (Total 10 marks)
			,
	Some H ₂ O ₂	e students investigated the rate of decomposition of hydroger	peroxide,
٦	Γhe e	equation for the reaction is:	
		$2~H_2O_2(aq) \rightarrow 2~H_2O(I) + O_2(g)$	
٦	Γhe d	catalyst for the reaction is manganese dioxide.	
(a)	Describe a test to identify the gas produced in the reaction.	
		Give the result of the test.	
		Test	
		Result	
			(2)

Student **A** investigated the effect of the particle size of manganese dioxide on the rate of the reaction.

This is the method used.

- 1. Measure 25 cm³ of 0.3 mol/dm³ hydrogen peroxide solution into a conical flask.
- 2. Add a spatula of fine manganese dioxide powder to the conical flask.
- 3. Measure the volume of gas produced every minute for 10 minutes.
- 4. Repeat steps 1 to 3 with some coarse manganese dioxide lumps.
- (b) The method student **A** used did not give valid results.

What **two** improvements could student **A** make to the method to give valid results?


Tick (\checkmark) **two** boxes.

Measure the increase in mass of the conical flask and contents.	0 0
Measure the volume of gas produced every 2 minutes.	
Place the conical flask in a water bath at constant temperature.	
Use 0.05 mol/dm³ hydrogen peroxide solution.	
Use a mass of 1 g manganese dioxide each time.	0 0

(2)

Student **B** used a method which gave valid results.

The graph below shows student **B**'s results.

(c) Determine the mean rate of reaction in cm³/s between 2 and 4 minutes for coarse manganese dioxide lumps.

Give your answer to 2 significant figures.

Use data from the graph.

Mean rate of reaction = _____ cm³/s

(3)

Hydrogen peroxide molecules must collide with manganese dioxide particles for catalysis to take place.

(d) Student **B** repeated the experiment with coarse lumps of manganese dioxide.

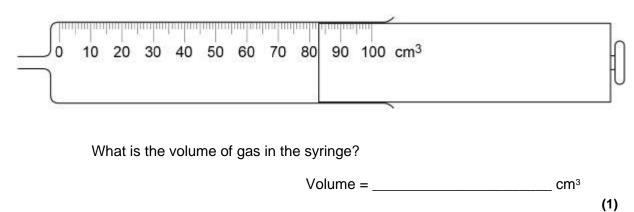
Student **B** used the same volume of 0.2 mol/dm³ hydrogen peroxide instead of 0.3 mol/dm³ hydrogen peroxide.

Sketch on the graph above the curve you would expect to see.

Assume that the reaction is complete after 9 minutes.

(2)

(e)	The rate of reaction is different when manganese dioxide is used as a fine powder rather than coarse lumps.	
	Explain why.	
	You should answer in terms of collision theory.	
	(2) (Total 11 marks)	


Q6.

A student investigated how concentration affects the rate of reaction between magnesium and hydrochloric acid.

This is the method used.

- 1. Place hydrochloric acid in a conical flask.
- 2. Add magnesium powder.
- 3. Collect the gas produced in a gas syringe.
- 4. Measure the volume of gas every 40 seconds for 160 seconds.
- 5. Repeat steps 1-4 three more times.
- 6. Repeat steps 1-5 with hydrochloric acid of a higher concentration.
- (a) **Figure 1** shows a gas syringe.

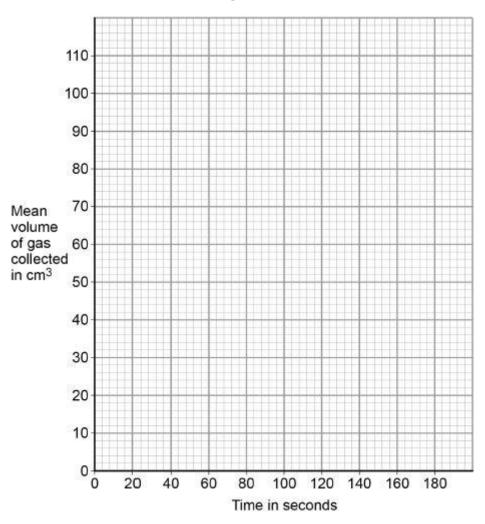
Figure 1

(b) Which **two** variables should the student keep the same to make the investigation a fair test?

Tick two boxes.

The acid

(c)


(d)

			0			
lass of ma	agnesium	powder				
emperatu	re of hydro	ochloric a	cid	/3		
ime for re	action to e	end		7.9 7.3		
/olume of	gas collec	ted)) /3		
	hows the contration		results fo	r the expe	eriment w	ith hydrochlori
Time in	Vo	lume of	gas colle	cted in c	m³	
seconds	Test 1	Test 2	Test 3	Test 4	Mean	
				_	_	
0	0	0	0	0	0	
0 40	0 46	0 30	0 47	49	X	
40	46	30	47	49	Х	
40 80	46 78	30 83	47 83	49 82	X 82	
40 80 120 160 alculate m	46 78 98	30 83 94 100 X in the tomalous	47 83 96 100 able aboveresult in y	49 82 95 100 re.	X 82 96 100	

You do not need to draw a line of best fit.

(2)

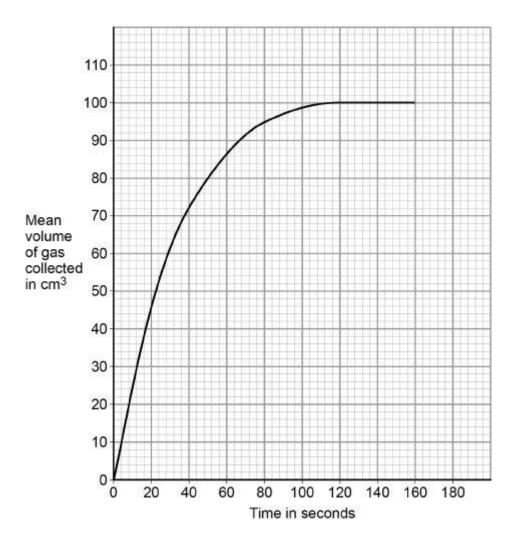


Figure 3 shows results of the experiment with the hydrochloric acid of a higher concentration.

Figure 3

(2)

(e) Calculate the mean rate of reaction between 0 and 50 seconds.

Use **Figure 3** and the equation:

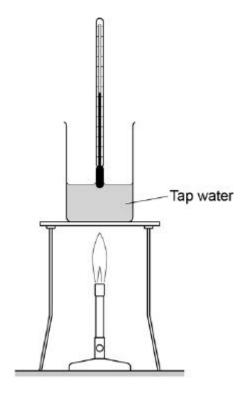
(f) Describe how the **rate of reaction** changes between 0 and 160 seconds.

Use Figure 3.

_	
	The student concludes that the rate of reaction is greater when the oncentration of hydrochloric acid is higher.
	Why is the rate of reaction greater when the concentration of hydrochloric cid is higher?
T	ick two boxes.
	The particles are moving faster
	The particles have more energy
	The surface area of magnesium is smaller
	There are more particle collisions each second
	There are more particles in the same volume
Т	he student tests the gas produced by bubbling it through limewater.
١	lo change is seen in the limewater.
_	Give one conclusion the student can make about the gas.
T	he student tests the gas produced using a burning splint.
١	lame the gas the student is testing for.
(Give the result of a positive test for this gas.
١	lame of gas

	(Total 1
Pota	able water is water that is safe to drink.
	water can be changed into potable water by desalination.
(a)	Name the substance removed from seawater by desalination.
()	· · · · · · · · · · · · · · · · · · ·
(b)	Desalination requires large amounts of energy.
	Desalination is only used when there is no other source of potable water.
	Give one reason why.
\\/ot	or from lakes and rivers can be treated to make it notable
	er from lakes and rivers can be treated to make it potable.
Wate	The first stage is to filter the water from lakes and rivers.
	·
	The first stage is to filter the water from lakes and rivers.
	The first stage is to filter the water from lakes and rivers.
(c)	The first stage is to filter the water from lakes and rivers.
(c)	The first stage is to filter the water from lakes and rivers. Why is the water filtered?
	The first stage is to filter the water from lakes and rivers. Why is the water filtered? Chlorine gas is then added to the filtered water.
(c)	The first stage is to filter the water from lakes and rivers. Why is the water filtered? Chlorine gas is then added to the filtered water. Why is chlorine gas used to treat water?
(c) (d)	The first stage is to filter the water from lakes and rivers. Why is the water filtered? Chlorine gas is then added to the filtered water. Why is chlorine gas used to treat water?
(c) (d)	The first stage is to filter the water from lakes and rivers. Why is the water filtered? Chlorine gas is then added to the filtered water. Why is chlorine gas used to treat water? Describe a test for chlorine gas.
(c)	The first stage is to filter the water from lakes and rivers. Why is the water filtered? Chlorine gas is then added to the filtered water. Why is chlorine gas used to treat water?

Some students investigated different water samples.


The table shows some of their results.

Water	рН	Mass of dissolved solid in g / dm ³
Tap water	6.5	0.5
Seawater	8.1	35.0
Pure water		

(f)	Complete the ta	able above to show the expected results for pure water.	(2)
(g)	What mass of owater?	dissolved solid is present in 100 cm ³ of the sample of tap	
	Tick (√) one be	ox.	
	0.05 g		
	0.5 g		
	5 g		
	50 g		
			(1)

(h) Boiling points can be used to show whether substances are pure.

The diagram shows the apparatus the students used to find the boiling point of tap water.

The students made a mistake setting up the apparatus.

What mistake did the students make?

(1)

(Total 10 marks)

Q8.

This question is about mixtures and analysis.

(a) Which **two** substances are mixtures?

Tick **two** boxes.

Air

Carbon dioxide

Graphite

Sodium Chloride

Steel

(2)

(c)

(d)

(b) Draw **one** line from each context to the correct meaning.

Context	Meaning	
	A substance that has had nothing added to it	
Pure substance in chemistry	A single element or a single compound	
	A substance containing only atoms which have different numbers of protons	
Pure substance in everyday life	A substance that can be separated by filtration	
	A useful product made by mixing substances	
What is the test for chlorine ga	s?	(2)
Tick one box.		
A glowing splint relights		
A lighted splint gives a pop		
Damp litmus paper turns white	e	
Limewater turns milky		
A student tested a metal chloring A brown precipitate formed.	ide solution with sodium hydroxide solution.	(1)
What was the metal ion in the	metal chloride solution?	
Tick one box. (separate on	ıly)	

AQA Chemistry GCSE - Identification of Common Gases	PhysicsAndMathsTutor.con
AQA Chemistry GC3E - Identification of Common Gases	i riysics/ (namatris rator.com

Calcium	
Copper(II)	
Iron(II)	
Iron(III)	
	(1)
	(Total 6 marks)