
All questions are for separate science students only

Q1.

This question is about substances used to make windows and window frames.

Figure 1 shows a window.

Figure 1

(a) Glass is made by heating sand with **two** other materials.

Which two other materials are used to make glass?

Tick (✓) **two** boxes.

Clay	3 9
Graphite	3 6
Limestone	3 3
Sodium carbonate	3 3
Sodium hydroxide	

(2)

Window frames need to be:

- easy to install
- resistant to damage.

The polymers poly(chloroethene) and HDPE are used to make window frames.

Table 1 shows information about poly(chloroethene) and HDPE.

Table 1

Property	Poly(chloroethene)	HDPE
Density in g/cm ³	1.4	0.92
Relative strength	72	25

(b)	Suggest one advantage of using poly(chloroethene) compared with HDPE
	to make window frames.

Give one reason for your answer.

Use Table 1.

Advantage __			
•			

Reason			

(2)

(c) Suggest **one** advantage of using HDPE compared with poly(chloroethene) to make window frames.

Give one reason for your answer.

Use Table 1.

Advantage _____

Reason

(2)

(d) **Figure 2** shows the displayed structural formula of poly(chloroethene).

Figure 2

$$\begin{pmatrix} H & Cl \\ -C & -C \\ --- & --- \\ H & H \end{pmatrix}_n$$

Which monomer is used to make poly(chloroethene)?

Tick (\checkmark) one box.

	H H C=C
	H Cl C = C
	Cl Cl C C C C C C C C
	Cl Cl Cl Cl Cl Cl Cl
Chle	orine gas is used to produce poly(chloroethene).
Des	scribe a test to identify chlorine gas.
Giv	e the result of the test.
Tes	et
Res	od can be used instead of polymers to make window frames.
•	Polymers are unreactive.
•	Polymers are produced from crude oil.
•	Wood breaks down in wet conditions.
•	Wood is produced from trees.
Suc	ggest one advantage of using polymers and one advantage of using
	od to make window frames.

/Vin	dow frames can a	so be made fro	om an alloy of	aluminium.	
g)	6.00 kg of the all	loy is used to r	nake a windov	w frame.	
	Table 2 shows t	he mass of ea	ch element in	6.00 kg of the	alloy.
		Table 2			
	Element		Mass in kg		
	Aluminium		5.94		
	Magnesium		0.04		
	Silicon		0.02		
	Calculate the pe	rcentage of alu	uminium in 6.0	00 kg of the allo	by.
		Per	centage of alu	ıminium =	%
			-		
h)	Why is an alloy (-		
h)	Why is an alloy u		-		
h)	Why is an alloy u		-		
h)	Why is an alloy u		-		
h)	Why is an alloy u		-		ndow frames?
	Why is an alloy of the control of th	used instead o	f pure alumini		ndow frames?
- his		used instead of	f pure alumini		ndow frames?
	question is about	used instead of organic companies with small	f pure alumini		ndow frames?
- his	question is about	organic companie with small entence.	ounds.		ndow frames?
'his	question is about Butane is an alk	organic companie with small entence.	ounds. molecules.		ndow frames?

	What is the name of the monomer used to produce poly(propene)?	
	Tick (✓) one box.	
	Propane	
	Propanoic acid	
	Propanol	
	Propene	
		(1)
Ethe	ne and steam react to produce ethanol.	
The 6	equation for the reversible reaction is:	
	ethene + steam	
(c)	The reaction produces a maximum theoretical mass of 400 kg of ethanol from 243 kg of ethene and 157 kg of steam.	
	A company produces 380 kg of ethanol from 243 kg of ethene and 157 kg of steam.	
	The percentage yield of ethanol is less than 100%	
	Calculate the percentage yield of ethanol.	
	Use the equation:	
pe	$\frac{\text{mass of ethanol actually made}}{\text{maximum theoretical mass of ethanol}} \times 100$	
	Percentage yield = %	(2)
(d)	What are two possible reasons why the percentage yield of ethanol is less than 100%?	
	Tick (✓) two boxes.	
	Ethanol is the only product of the reaction.	

Ethanol is very			
ethene and stea	hanges back into am.		
Some ethanol e apparatus.	scapes from the		
Some ethanol re	eacts with steam.	8	
Ethanol burns in	oxygen.		
Balance the equ	ation for the reaction.		
C ₂ F	$H_5OH + \underline{\hspace{1cm}} O_2 \rightarrow 0$	3 H ₂ O + 2 CO ₂	
Two processes f	or producing ethanol a	re:	
fermentation	on		
hydration (reacting ethene with st	team).	
	reacting ethene with st shows information abo	·	
The table below	shows information abo	·	
•	shows information abo	out the processes.	
The table below	shows information abo	out the processes.	
The table below Feature	shows information abo Pr Fermentation	ocess Hydration	
The table below Feature Raw material	shows information about Pr Fermentation sugar	ocess Hydration crude oil	
Feature Raw material Energy usage Rate of reaction Purity of	shows information about Pr Fermentation sugar low	ocess Hydration crude oil high	
Feature Raw material Energy usage Rate of reaction Purity of ethanol Give two advant	Pr Fermentation sugar low slow 15% cages and two disadva	hut the processes. Ocess Hydration crude oil high fast	
Feature Raw material Energy usage Rate of reaction Purity of ethanol Give two advant produce ethanol Advantage of fer	Pr Fermentation sugar low slow 15% cages and two disadva	Hydration crude oil high fast 98% ntages of using ferment	

(2)

(1)

Disadvantage of fermentation 2	
	(4)
	(Total 11 marks)

Q3.

This question is about poly(ethene) and polyesters.

(a) Poly(ethene) is produced from ethene.

Figure 1 shows part of the displayed structural formula equation for the reaction.

Complete Figure 1.

Figure 1
$$\begin{array}{cccc}
H & H & \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 & | & | \\
 &$$

(b) Poly(ethene) is a thermosoftening polymer.

Suggest why poly(ethene) is easier to recycle than thermosetting polymers.

(2)

(c) Ethene produces different forms of poly(ethene).

How can different forms of poly(ethene) be produced from ethene?

(d) Two different forms of poly(ethene) are:

- high density poly(ethene) (HDPE)
- low density poly(ethene) (LDPE).

(2)

(1)

Figure 2 represents part of the structures of HDPE and LDPE.

Figure 2

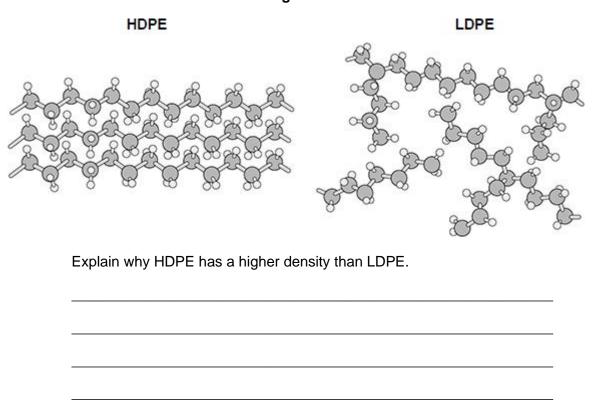


Figure 3 shows three monomers, A, B and C.

Monomer ${\bf A}$ can react with monomer ${\bf B}$ and with monomer ${\bf C}$ to produce polyesters.

Figure 3

- (e) Draw a circle on **Figure 3** around an alcohol functional group.
- (f) Complete the table below to show the formula of the small molecule

Page 8 of 25

produced when:

- monomer A reacts with monomer B
- monomer A reacts with monomer C.

Reacting monomers	Formula of small molecule produced
A and B	
A and C	

(1) (Total 9 marks)

(1)

\smallfrown	1
u	4.

This question is about materials used to make plates.

Plates are made from ceramics, paper or poly(propene).

(a) Paper plates are biodegradable and recyclable.

Which stage of a life cycle assessment (LCA) would contain this information?

Tick (\checkmark) one box.

Disposal at the end of useful life	
Extracting and processing raw materials	3 - 7 3 - 6
Manufacturing and packaging	3 (1) (3)
Use and operation during lifetime	

(b) Which **two** processes are used to make ceramic plates?

Tick (✓) two boxes.

Forming a composite

Galvanising with zinc

	Heating in a furnace	
	Melting sand and boron trioxide	
	Shaping wet clay	(2)
Poly	r(propene) is produced from an alkene.	(-)
(c)	Complete the sentences.	
	The name for very large molecules such as poly(propene) is	
	The name of the alkene used to produce poly(propene) is	
		(2)
(d)	The alkene needed to make poly(propene) is produced from crude oil.	
	Which two processes are used to produce this alkene from crude oil?	
	Tick (✓) two boxes.	
	Chromatography	
	Cracking	
	Fermentation	
	Fractional distillation	
	Quarrying	(2)
(e)	What type of bond joins the atoms in a molecule of poly(propene)?	(2)
()	Tick (✓) one box.	
	Covalent	

Ionic	
Metallic	
	(1)

The table below shows information about two polymers used to make plates.

Polymer	Effect of heating the polymer
Α	does not melt
В	melts at 50 °C

	of polymer is polymer A?
Jse the ta	able above.
Why does	s polymer A behave differently to polymer B when heated?
You shou	ld refer to crosslinks in your answer.
You shou	ld refer to crosslinks in your answer.
ou shou	ld refer to crosslinks in your answer.
ou shou	ld refer to crosslinks in your answer.

Q5.

This question is about carboxylic acids.

Carboxylic acids belong to a homologous series.

The table below shows information about the first three carboxylic acids in this homologous series.

Name	Formula	pH of a 0.01 mol/dm³ solution
Methanoic acid		2.91
Ethanoic acid	CH₃COOH	3.39
	CH₃CH₂COOH	3.44

(a) Complete the table above.

Ethanoic acid ionises in water.
The equation for the reaction is:
$CH_3COOH(aq) \rightleftharpoons CH_3COO^-(aq) + H^+(aq)$
Explain how the equation shows that ethanoic acid is a weak acid.
A student adds a solution of ethanoic acid to zinc carbonate in an open flask on a balance.
Explain what happens to the mass of the flask and its contents during the reaction.
The student compares the rates of the reaction of zinc carbonate with: 0.01 mol/dm³ methanoic acid 0.01 mol/dm³ ethanoic acid.
The rate of the reaction with methanoic acid is greater than the rate of the reaction with ethanoic acid.
Explain why.
You should refer to ions in your answer.
To a choose he have been an anomal.

noic acid reac	ts with ethan	ol to produ	ce an este	ſ .	

(e) Give the name of the ester produced when ethanoic acid reacts with ethanol.

(1)

(f) Hexanedioic acid and ethanediol join together to produce a polyester.

Ethanoic acid and ethanol join together in the same way to produce an ester.

Which is the displayed structural formula of the ester produced when ethanoic acid reacts with ethanol?

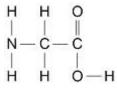
Tick (✓) one box.

(1)

(Total 12 marks)

Q6.

This question is about algae.


A student:

- placed algae in water containing dissolved carbon dioxide
- shone bright light on the algae.

Gas bubbles were collected as the algae photosynthesised

Gas	bubbles were collected as the algae photosynthesised.	
(a)	Describe a test that would identify the gas collected.	
	Give the result of the test.	
	Test	
	Result	
4. \		(2)
(b)	Glucose is produced when algae photosynthesise.	
	Name two naturally occurring polymers produced from glucose.	
	and	
		(2)

The diagram below shows the displayed structural formula of an amino acid called glycine.

(c) How many functional groups are there in the molecule in the diagram above ?

Tick (✓) one box.

(1)

(d) Glycine reacts by condensation polymerisation to produce a polypeptide and one other substance.

Name the other substance produced.

	entists think that algae may have used gases in Earth's early nosphere.
	ae need an element to produce the molecule in the diagram above ich is not present in water or carbon dioxide.
	ich two gases from Earth's early atmosphere could have provided this ment?
	and
	development and function of algae are controlled by a naturally curring polymer.
The	e image below represents the shape and structure of this polymer.
Des	scribe the shape and structure of this polymer.

Q7.

Figure 1 shows a surfer on a surfboard.

Figure 1

Surfboards are made from polymers.

Surfboards have a poly(styrene) core and an outer skin.

(a) **Figure 2** shows the displayed structural formula of poly(styrene).

Figure 2

$$\begin{pmatrix}
C_6H_5 & H \\
-C & -C \\
-H & H
\end{pmatrix}_{r}$$

Figure 3 shows an incomplete displayed structural formula of the monomer styrene.

Complete Figure 3.

Figure 3

(2)

The outer skin of surfboards contains a polyester.

Two monomers, **A** and **B**, are needed to make the polyester.

Figure 4 shows how these two monomers are represented.

Figure 4

Monomer A	Monomer B
ame the functional group in r	monomer B .
Nonomers A and B join togeth nolecule.	ner to produce a polyester and a small
lame the small molecule.	
Why does this type of polyeste	er melt when it is heated?

The outer skin of surfboards is a composite material.

The composite material contains glass fibres surrounded by a polyester.

(e) Draw **one** line from each material to the description of that material.

Material	Description of the material
	Hydrocarbon
Glass fibres	Matrix
	Monomer
Polyester	Polypeptide
	Reinforcement
The outer skin makes the surfboard more	e expensive.
Suggest two reasons why an outer skin	is added to the poly(styrene) core.

Q8.

Disposable cups are made from coated paper or poly(styrene).

The diagram below represents the structure of poly(styrene).

$$\begin{array}{c|cccc} \begin{pmatrix} C_6H_5 & H \\ - & I \\ C & - C \\ - & I \\ H & H \end{pmatrix}_n$$

(a) Which small molecule is used to produce poly(styrene)?

ceramics		composites		four	many
Choose answers	s from the bo	х.			
Complete the se	ntences.				
					(1
Polymerisation					
Fermentation					
Distillation					
Cracking					
ick one box.					
Which process is	s used to ma	ke poly(styrene	e) from small m	olecules?	(1
нін					(1
C ₆ H ₅ C ₆ H ₅ C == C					
Ĥ Ĥ CaHa CaHa					
c=c					
H H CH₃ Ḥ					
c=c					
н н С ₆ Н ₅ Н					
c=c					

(d)

join to form	e,	styrene molecules
large molecules.		
These large molecules are	called	
The table below gives some	e information about disp	osable cups.
	Coated paper cups	Polystyrene cups
Source of raw materials	Wood	Crude oil
Energy to make 1 cup in arbitrary units	550	200
Biodegradable	Yes	No
Recyclable	No	Yes

Q9.

This question is about polymers.

(a) Polyesters are produced when monomers join together and lose a small molecule.

Name the small molecule lost.

(1)

(b) Poly(propene) is produced from propene.

Complete the structure of poly(propene) in the equation.

(3)

- (c) Carpets are made from:
 - poly(propene)
 - wool
 - a mixture of poly(propene) and wool.

Poly(propene) wears out more slowly than wool.

A mixture of poly(propene) and wool to make carpets is more sustainable than using just poly(propene) or just wool.

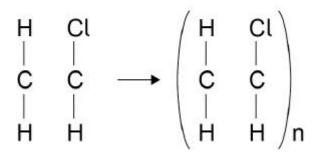
Suggest why.

(2)

Polymer fibres are used to make firefighter uniforms.

The table below shows some properties of two polymer fibres.

Polymer fibres


Property	Poly(propene)	Polyester
Density in g/cm ³	0.90	1.38
Melting point in °C	165	260
Flame resistance	Poor	Good
Water absorption	Low	High

(C	(ג	uniforms.	
			(4)
		(Total 10 m	(4) arks)
Q10.			
-		question is about polymers.	
(a	a)	Name the monomer used to form poly(chloroethene).	
			(1)
(b	o)	Figure 1 shows the equation for the formation of poly(chloroethene).	(-)
		Complete Figure 1.	

(3)

(1)

Figure 1

(c) Poly(chloroethene) is the only product.

What type of polymer is poly(chloroethene)?

(1)

Ethanediol reacts with butanedioic acid to produce a polyester and a small molecule.

(d) Figure 2 shows the structural formula of ethanediol.

Figure 2

Name the functional group present in ethanediol.

(e) Figure 3 shows the structural formula of butanedioic acid.

Figure 3

Which formula represents the carboxylic acid functional group?

Tick (**√**) **one** box.

-CH ₂ -	0 0
-CH ₂ -CH ₂ -	9 9
-CH ₂ -COOH	6 6 2 9

-COOH	y 9					
Figure 4 sho	ws part of the str	ucture of	the polye	ester.		
Complete the	box in Figure 4					
		Figure 4				
+c-	- CH ₂ - CH ₂	O -C O	CH ₂ -	-CH ₂	o) n	
Name the sm	all molecule prod	duced whe	en ethan	ediol rea	acts with	1
h, proteins an	d DNA are natur	ally occuri	ring poly	mers.		
	d DNA are natura				e produc	ced.
Name the mo		ich starch	and pro		e produc	ced.
Name the mo	nomers from wh	ich starch	and pro		e produc	ced.
Name the mo	nomers from wh	ich starch	and pro		e produc	ced.
Name the mo	nomers from wh	ich starch	and pro		e produc	ced.
Name the mo	nomers from wh	ich starch	and pro		e produc	ced.
Name the mo	nomers from wh	ich starch	and pro		e produc	ed.

Q11.

Ethene is used to produce poly(ethene).

(a) Draw the bonds to complete the displayed formulae of ethene and poly(ethene) in the equation.

(2)

(b)	Polyesters are made	by a	different	method	of pol	ymerisation
-----	---------------------	------	-----------	--------	--------	-------------

The equation for the reaction to produce a polyester can be represented as:

$$\text{n HO} - \bigcirc - \text{OH + n HOOC} - \bigcirc - \text{COOH} \longrightarrow \left\{ \bigcirc - \text{OOC} - \bigcirc - \text{COO} \right\}_{n} + 2 \text{nH}_{2} \text{O}$$

Compare the polymerisation reaction used to produce poly(ethene) with the polymerisation reaction used to produce a polyester.

(4)

(Total 6 marks)