Q1. Ethene is used to produce poly(ethene).

(a) Draw the bonds to complete the displayed formulae of ethene and poly(ethene) in the equation.

(2)

(b) Polyesters are made by a different method of polymerisation.

The equation for the reaction to produce a polyester can be represented as:

Compare the polymerisation reaction used to produce poly(ethene) with the polymerisation reaction used to produce a polyester.

(4)

(Total 6 marks)

Q2. A student investigated food dyes using paper chromatography.

This is the method used.

- 1. Put a spot of food colouring **X** on the start line.
- 2. Put spots of four separate dyes, **A**, **B**, **C** and **D**, on the start line.
- 3. Place the bottom of the paper in water and leave it for several minutes.

Figure 1 shows the apparatus the student used.

a) Write down **two** mistakes the student made in setting up the experiment and explain what problems one of the mistakes would cause.

(2)

(b) Another student set up the apparatus correctly.

Figure 2 shows the student's results. The result for dye **D** is not shown.

Figure 2

Calculate the R_f value of dye \boldsymbol{A}

Give your answer to two significant figures.

	R _f value =
(c)	Dye ${\bf D}$ has an R_f value of 0.80. Calculate the distance that dye ${\bf D}$ moved on the chromatography paper.

Distance moved by dye **D** =

(3)

(1)

(d)	Explain how the different dyes in X are separated by paper chromatography.

(e) Flame emission spectroscopy can be used to analyse metal ions in solution.

Figure 3 gives the flame emission spectra of five metal ions, and of a mixture of two metal ions.

(4)

Figure 3

Ca²⁺

Cu²⁺

Li⁺

Na⁺

K⁺

Mixture of two metal ions

Use the spectra to identify the **two** metal ions in the mixture.

		(2)
(f)	Explain why a flame test could not be used to identify the two metal ions in the mixture.	
		(2)
(g)	Two students tested a green compound X . The students added water to compound X . Compound X did not dissolve.	
	The students then added a solution of ethanoic acid to compound X . A gas was produced which turned limewater milky.	
	Student A concluded that compound X was sodium carbonate. Student B concluded that compound X was copper chloride.	
	Which student, if any, was correct?	
	Explain your reasoning.	

(Total 18 marks)

Q3.In industry ethanol is produced by the reaction of ethene and steam at 300°C and 60 atmospheres pressure using a catalyst.

The equation for the reaction is:

$$C_2H_4(g) + H_2O(g)$$
 \longleftarrow $C_2H_5OH(g)$

The figure below shows a flow diagram of the process.

(a)	willy does the mixture from the separator contain ethanoralid water:
(b)	The forward reaction is exothermic.
	Use Le Chatelier's Principle to predict the effect of increasing temperature on the amount of ethanol produced at equilibrium.
	Give a reason for your prediction.

(1)

(2)

(c)	Explain how increasing the pressure of the reactants will affect the amount of ethano produced at equilibrium.	·I
		(2)
		(Total 5 marks)

Q4.This question is about ethanol.

(a) Ethanol is produced by the reaction of ethene and steam:

$$C_2H_4 + H_2O$$
 — C_2H_5OH

(i) **Figure 1** shows the energy level diagram for the reaction.

Figure 1

How does the energy level diagram show that the reaction is exothermic?

(1)

(2)

(ii) A catalyst is used for the reaction.

Explain how a catalyst increases the rate of the reaction.

.....

(b) Figure 2 shows the displayed structure of ethanol.

Figure 2

Complete the dot and cross diagram in **Figure 3** to show the bonding in ethanol.

Show the outer shell electrons only.

Figure 3

(2)

(c) A student burned some ethanol.

Figure 4 shows the apparatus the student used.

Figure 4

(i) The student recorded the temperature of the water before and after heating.

His results are shown in Table 1.

Table 1

Temperature before heating	20.7 °C
Temperature after heating	35.1 °C

The specific heat capacity of water = 4.2 J / g / °C	Calculate the energy used to heat the water.
	Use the equation $Q = m \times c \times \Delta T$
	The specific heat capacity of water = $4.2 \mathrm{J/g/°C}$
2110.18) 4304	Energy used =

(ii) **Table 2** shows the mass of the spirit burner before the ethanol was burned and after the ethanol was burned.

(3)

Table 2

Mass of spirit burner before ethanol was burned	72.80 g
Mass of spirit burner after ethanol was burned	72.10 g

Calculate the number of moles of ethanol (C_2H_5OH) that were burned. Relative atomic masses (A_r): H = 1; C = 12; O = 16

Number of moles burned =	(3)
Calculate the energy released in joules per mole.	
You should assume that all the energy from the ethanol burning was used to heat the water.	

.....

(1)

(d) The names, structures and boiling points of ethanol and two other alcohols are shown in **Table 3**.

Table 3

Name	Methanol	Ethanol	Propanol
Structure	H-C-H	H-C-H	H H H H C C O H H H H
Boiling point in °C	65	78	97

(iii)

the number of carbon atoms increases.	; dS
	(3)
(Tota	al 15 marks)

Q5. This qu	uestion is about organic compounds.	
(a)	Ethanol is an alcohol. One use of ethanol is in alcoholic drinks.	
	Give two other uses of ethanol.	
		(2)
(b)	Which gas is produced when sodium reacts with ethanol?	
(-)	Tick (✓) one box.	
	Carbon dioxide	
	Carbon monoxide	
	Hydrogen	
	Oxygen	
		(1)
(c)	Ethanoic acid (CH ₃ COOH) can be produced from ethanol (CH ₃ CH ₂ OH).	
	(i) What type of reaction produces ethanoic acid from ethanol?	
		(1)
	(ii) Complete the displayed structure of ethanoic acid.	

(1)

		(±)
(iii)	Solutions of ethanoic acid and hydrochloric acid with the same concentration have different pH values.	
	Explain why the solution of ethanoic acid has a higher pH than the solution of hydrochloric acid.	
		(2)
Etha	nol and ethanoic acid react in the presence of a catalyst to form an ester.	
(i)	Name the ester made from ethanol and ethanoic acid.	
		(1)
(ii)	What type of chemical is used as a catalyst in this reaction?	. 7

(1)

(iii) Esters are used in perfumes because they smell pleasant and are volatile.

What does volatile mean?

(1)

(Total 10 marks)

(d)