1 1 1 1 1 1 1 [9] # Mark schemes # Q1. (a) $$\frac{54 + 50 + 55}{3}$$ = 53 (°C) if no other mark awarded allow **1** mark for 54 + 50 + 27 + 55 $$\frac{54 + 50 + 37 + 55}{4} = 49 \,(^{\circ}\text{C})$$ (b) (most reactive) magnesium zinc (least reactive) cobalt allow ecf from question (a) - (c) $(18 \pm) 2 (^{\circ}C)$ - (d) control - (e) use the same mass of metal / powder - (f) (A) progress of reaction - (B) activation energy - (C) products # **Q2**. (a) water vapour allow steam allow gaseous water - (b) 75 (cm³) - (c) product level below reactants ignore labelling of products activation energy drawn and labelled 1 1 1 1 1 if endothermic profile drawn allow corresponding overall energy change scores 3 marks (d) (bonds broken = 4(364) + 3(498) = 2950 (bonds formed = 2950 + 1034 =) 3984 allow correct use of incorrectly calculated values of bonds broken 1 4X + 4(464) = 3984 allow correct use of incorrectly calculated values of bonds formed 4X = (3984 - 1856 =) 2128 X = 532 (kJ/mol) # alternative approach: (bonds broken = 4(364) + 3(498) = 2950 (1) (bonds formed = 4(464) + 4X = 1856 + 4X (1) (1856 + 4X) - 2950 = 1034(1) allow correct use of incorrectly calculated values of bonds broken and/or bonds formed $$4X = (1034 + 2950 - 1856 =) 2128 (1)$$ X = 532 (kJ/mol) (1) [10] | Q3. (a) | water allow H₂O do not accept energy | 1 | | |----------------|---|---|------------| | (b) | W = energy | 1 | | | | X = activation energy | 1 | | | | Y = overall energy change | 1 | | | | Z = progress of reaction | 1 | | | (c) | to produce a potential difference | 1 | | | (d) | magnesium and copper | 1 | | | | (the metals) have the largest difference in reactivity | 1 | 101 | | 04 | | | [8] | | Q4. (a) | $C_6H_8O_7$ | 1 | | | (b) | covalent | 1 | | | (c) | shows (single and) double bonds | 1 | | | | shows which atoms are which element | 1 | | | (d) | temperature decreases (during the reaction) allow (the solution) gets colder | 1 | | | (e) | all six points plotted correctly allow a tolerance of ± ½ small square allow 1 mark for four / five points plotted correctly | | | | | line of best fit | 2 | | | | extrapolation to meet the printed line | 1 | | (f) 22.6 - 20.2allow ecf from question (e) 1 = 2.4 (°C)ignore sign if no other mark awarded allow 1 mark for 2.2 (°C) 1 (g) temperature of solution [12] Q5. (a) the activation energy should be from the reactants (line to the peak) ignore description of where the activation energy is on the diagram the products (line) should be below the reactants (line) or the products should have less energy than the reactants allow the product (line) is above the reactants (line) allow the products have more energy than the reactants allow the profile shows an endothermic reaction ignore the arrow for the overall energy change should point downwards 1 any two from: (hydrogen fuel cells) (b) allow converse arguments for a rechargeable cell no toxic chemicals to dispose of at the end of the cell's life take less time to refuel (than to recharge rechargeable cells) travel further before refuelling (than before recharging rechargeable cells) allow has a greater range no loss of efficiency (over time) allow does not lose capacity / range in cold weather 2 (c) any **one** from: allow multiples ``` H_2 \rightarrow 2 H^+ + 2 e^- allow H_2 - 2 e^- \rightarrow 2 H^+ O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O allow H_2 + 2 OH^2 - 2 e^2 \rightarrow 2 H_2O H_2 + 2 OH^- \rightarrow 2 H_2O + 2 e^- O_2 + 2 H_2O + 4 e^{-} \rightarrow 4 OH^{-} 1 (d) any two from: hydrogen is not shown as H₂ / molecules particles are shown as spheres particles are shown as solid does not show the (weak) forces (between particles) does not show the movement / speed (of particles) is only two-dimensional 2 any one from: (e) under (higher) pressure allow increase concentration cool allow condense absorb / adsorb in a solid allow store as a liquid / solid allow develop more efficient engines 1 (f) (58 \text{ MJ} =) 58 000 \text{ kJ} or (290 \text{ kJ} =) 0.290 \text{ MJ} allow (58 MJ =) 58 000 000 J and (290 \text{ kJ} =) 290 000 \text{ J} 58000 290 or 0.290 (moles = allow correct use of an incorrectly converted or unconverted value of energy (volume =) 200 \times 24 allow correct use of an incorrectly calculated number of moles of hydrogen 1 = 4800 (dm³) 1 ``` alternative approach: (58 MJ =) 58 000 kJ (1) (energy released per dm³ = 290/24 =) 12.08333 (kJ/dm³) (1) (volume =) 58000/12.08333 (1) allow correct use of an incorrectly converted or unconverted value of energy allow correct use of an incorrectly calculated energy released per dm³ $=4800 (dm^3) (1)$ [12] ## **Q6.** (a) H_2O_2 1 (b) covalent 1 (c) transition metals 1 (d) B 1 (e) A 1 (f) exothermic 1 (g) scores **2** marks allow dots, crosses, circles or e⁽⁻⁾ for electrons 1 bonding pair of electrons in the right hand overlap do **not** accept any change to the number of electrons in the left hand overlap 1 4 non-bonding electrons on oxygen do not accept non-bonding electrons on hydrogen ignore inner shell electrons drawn on oxygen [8] # **Q7.** (a) allow one mark if answers are reversed 1 (b) polystyrene is a better insulator 1 (c) both bars labelled 1 both bars correctly plotted allow tolerance of $\pm \frac{1}{2}$ small square ignore width and spacing of bars if no other mark scored, allow **1** mark for any one bar correctly plotted and labelled 1 (d) temperature increases allow (because) energy / 'heat' is transferred to the surroundings or temperature does not decrease energy / 'heat' is not taken in from the surroundings allow the energy of the products is less than the energy of the reactants (most reactive) (e) magnesium (zinc) nickel this order only 1 suitable method described (f) the observations / measurements required to place in order 1 an indication of how results would be used to place the unknown metal in the reactivity series 1 approaches that could be used: approach 1: add the unknown metal to copper sulfate solution (1) measure temperature change (1) place the metals in order of temperature change (1) approach 2: add the metal to salt solutions of the other metals heat the metal with oxides of the other metals (1) measure temperature change (only if salt solutions used) or observe whether a chemical change occurs (1) compare temperature change or whether there is a reaction to place in correct order (1) approach 3: add all of the metals to an acid (1) measure temperature change or means of comparing rate of reaction (1) place the metals in order of temperature change or rate of reaction (1) approach 4: set up electrochemical cells with the unknown metal as one electrode and each of the other metals as the other electrode (1) | | measure the voltage of the cell (1) | | |-----|---|------| | | place the metals in order of voltage (1) | | | (g | D | 1 | | /h | | 1 | | (h | C | 1 | | | | [12] | | Q8. | | | | (a | all 4 metals labelled and suitable scale on y-axis | | | | magnesium value must be at least half
the height of the grid | 1 | | | | 1 | | | all bars correctly plotted | | | | allow a tolerance of ±½ a small square ignore width and spacing of bars | | | | allow 1 mark if copper not included and other 3 bars plotted correctly | 1 | | | | 1 | | (b | | | | | allow (because) energy / 'heat' is
transferred to the surroundings | | | | allow energy / 'heat' is given out | | | | or | | | | temperature does not decrease | | | | allow energy / 'heat' is not taken in | | | | (from the surroundings) allow the energy of the products is less | | | | than the energy of the reactants | 1 | | | ignore because it is exothermic ignore references to copper | 1 | | (c) | suitable method described | | | | | 1 | | | the observations / measurements required to place in order | | | | dependent on a suitable method | 1 | | | an indication of how results would be used to place the unknown | | | | metal in the reactivity series | 1 | | | a control variable to give a valid result | | | | a control variable to give a valia localit | 1 | ### approaches that could be used ## approach 1: add the unknown metal to copper sulfate solution (1) measure temperature change (1) place the metals in order of temperature change (1) ### any **one** from (1): - same volume of solution - same concentration of solution - same mass / moles of metal - same state of division of metal ### approach 2: add the metal to salt solutions of the other metals #### or heat the metal with oxides of the other metals (1) measure temperature change (only if salt solutions used) #### or observe whether a chemical change occurs (1) place the metals in order of temperature change **or** compare whether there is a reaction to place in correct order (1) ### any one from (1): - same volume of salt solutions - same concentration of salt solutions - same (initial) temperature of salt solutions - same mass / moles of metal or metal oxide - same state of division of metal or metal oxide ## approach 3: add all of the metals to an acid (1) measure temperature change or means of comparing rate of reaction (1) place the metals in order of temperature change or rate of reaction (1) #### any **one** from (1): - same volume of acid - same concentration of acid - same (initial) temperature of acid - same mass / moles of metal - same state of division of metal #### approach 4: set up electrochemical cells with the unknown metal as one electrode and each of the other metals as the other electrode (1) measure the voltage of the cell (1) 1 place the metals in order of voltage (1) any one from (1): - same electrolyte - same concentration of electrolyte - same (initial) temperature of acid - same temperature of electrolyte - (d) correct shape for exothermic reaction the reactant and product lines needed not be labelled do **not** accept incorrectly labelled reactant and product lines labelled activation energy labelled (overall) energy change ignore arrow heads an answer of: Progress of reaction scores 3 marks [10] 1 1 # Q9. - (a) measuring cylinder - (b) use a polystyrene cup allow insulate the beaker and / or use a lid better insulator or reduces energy transfer from the surroundings (c) starting temperature of hydrochloric acid volume of hydrochloric acid 1 1 1 1 1 1 1 1 1 (d) 21.4 (°C) (e) - 15.8 (°C) to 16.1 (°C) *allow 16.1 (°C) to 15.8 (°C)* - (f) $\frac{16.1 + 15.8 + 15.9}{3}$ =15.9 (°C) an answer of 15.9(333..) (°C) scores **2** marks allow 15.9(333..) (°C) - (g) temperature decreases - (h) straight line from (1.0, 19.8) to (5.0, 14.6) ignore continuation of line in either direction horizontal straight line from (5.0, 14.6 to 8.0, 14.6) ignore continuation of line in either direction the answer below scores 2 marks (i) (lowest) temperature decreases to 14.6 °C | | or
until 5 g added | 1 | | |------|--|---|------| | | then no change to temperature (after 5 g solid added) or | | | | | then temperature remains at 14.6 °C (after 5 g solid added) | 1 | [15] | | Q10. | | | | | (a) | (i) 5.75 or 5.8 correct answer with or without working gains 2 marks | | | | | correct working showing addition of any four results and division by 4 gains 1 mark OR | | | | | 6(.04) for 1 mark | 2 | | | | (ii) use a polystyrene cup or lid | | | | | accept insulate the beaker | 1 | | | | to prevent energy/heat gain accept to prevent energy/heat transfer do not accept energy/heat loss | | | | | OR | | | | | use a digital thermometer allow use a data logger | | | | | easier to read (to 0.1°C) | 1 | | | (b) | (as mass increases) the final temperature increases | 1 | | | | then stays constant | 1 | | | | correct reference to a value above 8 g up to and including 10 g as mass when the trend changes | 1 | | | | | | [7] | | Q11. | water / H-O | | | | (a) | water / H₂O
allow steam or hydrogen oxide | 1 | | | (b) | (i) | A | 1 | | |-----|-------|---|---|------| | | (ii) | exothermic | 1 | | | | | products (energy) lower than reactants (energy) | 1 | | | | (iii) | 1860 (kJ) | 1 | | | (c) | (i) | 22.5 | 1 | | | | | 38.7 | 1 | | | | | 16.2 allow ecf for correct subtraction | 1 | | | | (ii) | 50 (g) | 1 | | | | (iii) | 20.1 (kJ) allow propanol ignore 3 | 1 | | | | (iv) | as the number of carbon atoms (in one molecule of alcohol) increases the heat energy given out increases (when the alcohol is burned) | 1 | | | | (v) | any two from: no lid no insulation no draught shield Allow heat / energy loss to surroundings for any one of these marks | | | | | | incomplete combustion inaccurate measurement no repeats (to calculate a mean) | 2 | | | | (iv) | -O-H | 1 | [14] |