Mark schemes

Q1.

(a)	by filtration		1
(b)	10 minutes per allo	2 cm on x-axis ow 5 minutes per 1 cm on x-axis	1
	all points plotte allo allo con	ed correctly bw a tolerance of $\pm \frac{1}{2}$ a small square bw 1 mark for 3 or 4 points plotted crectly	2
	line of best fit allo inc	ow line of best fit drawn using orrect plots	1
(c)	0.14 (g) allo allo	The provided the	1
(d)	(copper sulfate allo allo	solution) pink / orange / red / brown solid ow copper plating ow metal for solid	1
	(sodium chlorid if n for col	de solution) bubbles / effervescence / fizzing to other mark awarded allow 1 mark oper and hydrogen	
(e)	toxic / poisonol allo ian	us (fumes) ow harmful / corrosive (fumes)	1
	ign	ore dangerous / deadly / lethal	1

(f)

Molten compound electrolysed	Product at the negative electrode	Product at the positive electrode
(zinc chloride)	zinc (1)	chlori <u>n</u> e (1)
potassium iodi <u>d</u> e	(potassium)	(iodine)

1

1

2

1 2

allow 1 mark if zinc and chlorine the wrong way round	
	2
	1
	[12]

Q2.

(a)	electrolysis uses electricity to produce a chemical reaction
	allow voltage for electricity
	allow potential difference for electricity
	allow (electrical) current for electricity
	allow electrolysis uses electricity to
	decompose a compound / electrolyte

(but) cells use a chemical reaction to produce electricity

(b) $2Br^{-} \rightarrow Br_2 + 2e^{-}$

allow multiples allow **1** mark for Br₂ **and** e-

(C)

Salt solution	Product at positive electrode	Product at negative electrode	
(copper nitrate)	oxygen (1)	(copper)	
(potassium iodide)	iodi <u>n</u> e (1)	hydrogen (1)	

(d) filter the mixture

		1
	wash and dry the copper / residue	1
	weigh the copper collected	1
	add to the increase in mass of the electrode	1
(e)	(for given current) straight line through the origin allow (for given current) when time doubles, mass doubles	1
(f)	(for given time) when current doubles, mass doubles with supporting data	1

	(g)	copper ions are discharged (from the solution) allow the solution becomes less concentrated	
		allow copper ions are removed (from the solution)	
		allow copper ions are used up (from the solution)	
			1
	(h)	(number of moles = $\frac{0.24}{63.5}$ =) 3 78 × 10 ⁻³ or 0.00378	
		3.76 × 10 ° CI 0.00370	1
		(number of atoms =) $0.00378 \times 6.02 \times 10^{23}$	
		allow correct use of an incorrectly calculated number of moles	
			1
		$= 2.28 \times 10^{21}$	
		allow a correct evaluation to 3 significant figures of an incorrect expression which involves only a mass from the graph, the A _r of copper and the Avagadra constant	
		Avogadro constant	1
			[17]
Q3.			
L U.	(a)	(negative electrode) solid produced	
		allow the electrode changes colour	
		ignore metal produced	1
			1
		(positive electrode) bubbles / fizzing / effervescence	
		ignore gas produced	1
	(h)	potassium nitrate	
	(0)		1
		hydrogen is not a metal	
		allow hydrogen is a gas allow hydrogen is not a solid allow the products at both electrodes are gases allow the product at the negative electrode is not potassium	
		allow hydrogen is a gas allow hydrogen is not a solid allow the products at both electrodes are gases allow the product at the negative electrode is not potassium allow potassium is more reactive than	

(c)	(graphite) conducts (electricity) allow (graphite) has delocalised / free electrons		
	(graphite) is inert allow (graphite) is unreactive	1	
(d)	the ions move towards the positive electrode	1	
	the electrode attracts ions of the opposite charge allow opposite charges attract	1	[8]

Q4.

1

	 allow the lake (of mud) could overflow leakage of toxic substances from mud to environment water pollution damage to habitats visual pollution (dam) blocks light reduces the value of houses allow unpleasant smell 	2
(e)	10 / ten	1
(f)	to lower the melting point of the mixture	1
(g)	oxygen must be in this order	1
	carbon	1
(h)	25 100 × 300 000	1
	=75 000	1
	= 7.5 ×10 ⁴ (kg) allow correct conversion to standard form of an incorrectly calculated mass	1 [13]
Q5. (a)	CrO ₄ ²⁻ / chromate ions moved to the positive electrode allow anode for positive electrode allow yellow (coloured) ions moved to the positive electrode	1
	(because) opposite charges attract allow (because) negative ions are attracted to the positive electrode	1
(b)	water	

ignore copper chromate solution

(c) copper ions gain two electrons

	allow Cu ²⁺ for copper ions	
	allow 1 mark for copper ions gain	
	electrons	
	or allow 1 mark for conner ions are	
	reduced	
	do not accept copper ions are oxidised	
		2
	(to) form copper (atoms)	
	allow Cu for conner (atoms)	
	the equation:	
	$Cu^{2+} + 2e^{-} \rightarrow Cu$	
	scores 3 marks	
		1
(d)	(negative electrode) bydrogen	
(u)		
		1
	(positive electrode) iodine	
	allow I ₂	1
		1 [8]
		[0]
Q6.		
(a)	mixture has a lower melting point (than aluminium oxide)	
	allow cryolite lowers melting point (of	
	aluminium oxide)	
	ignore boiling point	
	do not accept cryolite is a catalyst	1
		1
	(so) less energy needed	
	ignore cost	
		1
(b)	aluminium ions gain electrons	
	, , , , , , , , , , , , , , , , , , ,	1
(c)		
(0)	$2 O^{-} \rightarrow O_{2} + 4 e^{-}$ allow multiples	
	allow 1 mark for an unbalanced	
	equation containing correct species	
		2
(d)	the electrode reacts with oxygen	
(4)		1
	the electrode is earlier (are thit.	
	the electrode is carbon / graphite	1
	(so) carbon dioxide is produced	
	allow (so) the electrode / carbon /	

1

1

1

1

1

graphite is used up allow (so) the electrode / carbon / graphite is burned away ignore (so) the electrode / carbon / graphite is worn away ignore (so) the electrode / carbon / graphite is corroded

(e)

an answer of 941 (kg) scores 4 marks

$$(M_{\rm r} \text{ of } Al_2O_3 =) 102$$

$$\left(\frac{2\ 000\ 000}{102} =\right) 19608 \text{ (mol } Al_2O_3\text{)}$$
allow correct calculation using incorrectly calculated value of $M_{\rm r}$ of Al_2O_3

 $(19608 \times \frac{3}{2} =) 29412 \pmod{O_2}$

allow correct calculation using incorrectly calculated value of moles of Al_2O_3

$$\left(\frac{29412 \times 32}{1000}\right)$$
 = 941 (kg)

allow 941.1764706 (kg) correctly rounded to at least 2 significant figures allow correct answer using incorrectly calculated value of moles of O_2

alternative approach:

 $(2 M_r \text{ of } Al_2O_3 =) 204 (1)$

204 (kg of Al₂O₃) gives 96 (kg of O₂) (1)

(2000 kg of Al₂O₃ gives)

or

= 941 (kg) (1)

(f) hydrogen (gas) would be produced (instead of sodium)

(because) sodium is more reactive than hydrogen

		1	
(g)	an answer of 50700 (dm³) scores 2 marks an answer of 50.7 (dm³) scores 1 mark		
	$\left(\frac{150\ 000}{71}\right)$ 2113 (mol of Cl ₂)	1	
	or		
	(volume of 1 g of $Cl_2 = \frac{24}{71} = 0.34$ (dm ³)		
	$\left(\frac{150\ 000}{71}\mathrm{x}\ 24\right) = 50700\ (\mathrm{dm}^3)$		
	allow 50704.22535 (dm ³) correctly rounded to at least 2 significant figures allow correct calculation using their calculated number of moles and/or calculated volume of 1 g		
		1	[16]
Q7.			
(a)	3.6 (cm ³)	1	
(b)	hydrogen line only	1	
(c)	both lines	1	
(d)	graphite has delocalised electrons	1	
(e)	cathode anode		
	zinc (1) chlorine (1) do not accept chloride allow 1 mark if chlorine and zinc the wrong way around	1+1	
	hydrogen (1) bromine (1) do not accept bromide allow 1 mark if bromine and hydrogen the wrong way around		
		1+1	[8]
			L~1

Page 9 of 15

Q8.		
(a)	solid (zinc chloride) does not conduct (electricity)	
	zinc chloride needs to be in solution or molten	
	allow liquid / aqueous	
		1
	(because) ions cannot move in the solid or	
	(as) ions can (only) move in liquid / solution	
	do not accept references to movement	
	of electrons in zinc chloride	1
		1
(b)	each carbon / atom forms 3 (covalent) bonds	1
		1
	one electron per carbon / atom is delocalised	
		1
	(so) these electrons carry charge through the graphite or	
	(so) these electrons move through the structure	
	ignore carry current / electricity	4
	if no other mark scored allow 1 mark	1
	for delocalised / free electrons	
	allow free electrons for delocalised	
	electrons	
(c)	use measuring cylinders (instead of test tubes)	
()	allow use burettes	
	allow use (gas) syringes	
	allow Hoffmann voltameter	1
		•
	(because) test tubes cannot measure volume	
	(because) test tubes have no graduations / scale	
	allow (so that) volume can be measured	
		1
(d)	any three from:	
	 the volume of hydrogen collected is directly proportional to the time 	
	allow the (volume of) hydrogen is	
	collected at a constant / steady rate	
	• the rate of collection of hydrogen is 0.45 (cm ³ /min)	
	 up to 8 minutes chlorine is collected at an increasing rate 	
	allow any value from 6 to 8 minutes	
	allow initially chlorine is collected at an	

increasing rate

after 8 minutes the rate of collection of chlorine is the same as that of hydrogen

allow any value from 6 to 8 minutes

or

after 8 minutes the rate of collection of chlorine is 0.45 (cm³/min)

allow after 8 minutes the (volume of) chlorine is collected at a constant / steady rate if neither bullet point 3 nor bullet point 4 is awarded allow 1 mark for chlorine is collected slowly up to 8 minutes and then more quickly allow any value from 6 to 8 minutes

3

1

1

1

1

(e) chlorine reacts with water or

chlorine dissolves (in the solution).

$$(volume =) \frac{6.6}{1000} (dm^3)$$

(f)

or 0.0066 (dm³)

allow 6.5 (cm³) for 6.6 (cm³)

$$(moles =) \frac{0.0066}{24}$$

allow use of incorrect volume from step 1

= 2.75 × 10⁻⁴ (mol)

allow 2.8 × 10^{-4} (mol) allow answer from incorrect calculation given in standard form alternative approach for marking points 1 and 2 24 dm³ = 24 000 cm³ (1)

$$(moles =) \frac{6.6}{24\,000} (1)$$

an answer of 2.75 × 10⁻⁴ (mol) or 2.8 × 10⁻⁴ (mol) scores **3** marks an answer of 0.000275 / 0.00028 / 2.75 × 10⁻¹ / 2.8 × 10⁻¹ (mol) / scores **2**

	marks an incorrect answer for one step does not prevent allocation of marks for subsequent steps	[10]
Q9.		
(a)	(diagram) complete circuit with power supply	1
	test solution in beaker or other appropriate apparatus	1
	electrodes allow carbon, platinum or inert electrodes	1
	(independent variable) salt solutions (with different metal ions)	1
	(observation) solid / metal deposit on the negative electrode	1
(b)	(sometimes) hydrogen is produced	1
	(because) the metal is more reactive than hydrogen	1
(c)	chlorine	1
	oxygen	1 [9]
Q10.		
(a)	The forces between iodine molecules are stronger	1
(b)	anything in range +30 to +120	1
(c)	Brown	1
(d)	$2 I^- + CI_2 \rightarrow I_2 + 2 CI^-$	1
(e)	It contains ions which can move	1

	(f)	hydro	ogen iodine	1	[6]
Q1	1 1.	- (
	(a)	elect	allow an electric current	1	
	(b)	(i)	chlorine/Cl ₂ do not accept chloride	1	
		(ii)	(zinc ions are) positive ignore to gain electrons	1	
			and (opposite charges) attract	1	
		(iii)	reduction	1	
	(c)	(i)	in alloy: accept converse		
			different sized atoms/particles		
			or		
			no layers/rows accept layers distorted	1	
			so cannot slide	1	
		(ii)	shape memory (alloys) accept smart	1	[8]
Q1	(a)	mag	nesium loses two electrons and chlorine gains one electron accept magnesium loses electrons and chlorine gains electrons for 1 mark ignore oxidation and reduction		

one magnesium and two chlorines accept MgCl₂

1

2

	noble	e gas structure		
	or			
	eight electrons in the outer shell accept full outer shell (of electrons)			
	or			
	(elec	trostatic) attraction between ions		
	or			
	form	s ionic bonds do not accept covalent bonds		
		reference to incorrect particles or incorrect bonding or incorrect structure = max 3	1	
(b)	(i)	because ions can move ignore ions attracted do not accept molecules / atoms moving do not accept incorrect reference to electrons moving	1	
		(and ions move) to the electrodes		
		or		
		(and ions) carry charge	1	
		accept converse for solid		
	(ii)	magnesium (ions) attracted (to the electrode)	1	
		so magnesium ions gain electrons		
		accept magnesium ions are reduced ignore oxidised	1	
		2 electrons accept a correct half equation for 2 nd and 3 rd marking points	1	
	(iii)	hydrogen		
	. •	allow H ₂	1	
	(iv)	magnesium is more reactive than hydrogen accept converse allow magnesium is high in the reactivity series or		

	magnesium is very/too reactive.	
	do not accept magnesium ions are more reactive	
	than hydrogen ions	1
		1
	(v) 2 $Cl^- \rightarrow Cl_2 + 2e^-$	
	must be completely correct	
		1
(c)	layers (of particles/atoms/ions)	
()		1
	(particles/atoms/ions/layers) can slide	1
	any mention of intermolecular / weak bonds/forces	1
	= max 1	
		[14]