Questions are for both separate science and combined science students unless indicated in the question

$\boldsymbol{\wedge}$	4	
u	1	١.

Potash alum is a chemical compound.

Potash alum contains potassium ions, aluminium ions and sulfate ions.

(b) Sodium hydroxide solution is used to test for some metal ions. Sodium hydroxide solution is added to a solution of potash alum until a precipitate forms. Complete the sentence. (separate only) Choose the answer from the box. blue brown green white The colour of the precipitate formed is	ı ola	on alum contains po	tassiaiii lolis, ala	iiiiiiiaiii iolis ai	ia sanate ion	.	
Flame emission spectroscopy Flame test Measuring boiling point of solution Paper chromatography Using litmus paper (2) (b) Sodium hydroxide solution is used to test for some metal ions. Sodium hydroxide solution is added to a solution of potash alum until a precipitate forms. Complete the sentence. (separate only) Choose the answer from the box. blue brown green white The colour of the precipitate formed is	(a)			identify the pre	esence of pot	assium ions	
Flame test Measuring boiling point of solution Paper chromatography Using litmus paper (2) (b) Sodium hydroxide solution is used to test for some metal ions. Sodium hydroxide solution is added to a solution of potash alum until a precipitate forms. Complete the sentence. (separate only) Choose the answer from the box. blue brown green white The colour of the precipitate formed is (c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride limewater.		Tick (✓) two boxes	. (separate only	/)			
Measuring boiling point of solution Paper chromatography Using litmus paper (2) (b) Sodium hydroxide solution is used to test for some metal ions. Sodium hydroxide solution is added to a solution of potash alum until a precipitate forms. Complete the sentence. (separate only) Choose the answer from the box. blue brown green white The colour of the precipitate formed is (c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride limewater		Flame emission sp	pectroscopy				
Paper chromatography Using litmus paper (2 (b) Sodium hydroxide solution is used to test for some metal ions. Sodium hydroxide solution is added to a solution of potash alum until a precipitate forms. Complete the sentence. (separate only) Choose the answer from the box. blue brown green white		Flame test					
Using litmus paper (2) (b) Sodium hydroxide solution is used to test for some metal ions. Sodium hydroxide solution is added to a solution of potash alum until a precipitate forms. Complete the sentence. (separate only) Choose the answer from the box. blue brown green white The colour of the precipitate formed is (c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride limewater.		Measuring boiling	point of solution				
(b) Sodium hydroxide solution is used to test for some metal ions. Sodium hydroxide solution is added to a solution of potash alum until a precipitate forms. Complete the sentence. (separate only) Choose the answer from the box. blue brown green white The colour of the precipitate formed is (c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride limewater		Paper chromatogra	aphy				
(b) Sodium hydroxide solution is used to test for some metal ions. Sodium hydroxide solution is added to a solution of potash alum until a precipitate forms. Complete the sentence. (separate only) Choose the answer from the box. blue brown green white The colour of the precipitate formed is (c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride limewater		Using litmus paper	٢				
Sodium hydroxide solution is added to a solution of potash alum until a precipitate forms. Complete the sentence. (separate only) Choose the answer from the box. blue brown green white The colour of the precipitate formed is (c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride limewater							(2)
complete the sentence. (separate only) Choose the answer from the box. blue brown green white The colour of the precipitate formed is (c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride limewater.	(b)	Sodium hydroxide s	solution is used to	o test for some	metal ions.		
Choose the answer from the box. blue brown green white			solution is added	to a solution o	f potash alun	n until a	
blue brown green white The colour of the precipitate formed is (c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride		Complete the sente	ence. (separate o	only)			
The colour of the precipitate formed is (c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride		Choose the answer	r from the box.				
(c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride		blue	brown	green	white		
(c) Complete the sentence. Choose the answer from the box. (separate only) barium chloride		The colour of the n	recinitate formed	is			
Choose the answer from the box. (separate only) barium chloride		The colour of the pi	reoipitate formed	15		_•	(1)
barium chloride	(c)	Complete the sente	ence.				
limewater		Choose the answer	r from the box. (separate only)		
			de lim	ewater			
red litmus paper silver nitrate solution		red litmus pap	er silver nit	rate solution			

Sulfate ions can be identified using dilute hydrochloric acid

	and	(1)
(4)	A colution of notach alum has a concentration of 250 a/dm³	(1)
(d)	A solution of potash alum has a concentration of 258 g/dm ³	
	Calculate the mass of potash alum needed to make 800 cm ³ of a solution of potash alum with a concentration of 258 g/dm ³	
	Give your answer to 3 significant figures.	
		-
		-
		-
		-
		-
	Mass (3 significant figures) =	
	(Total 8	(4) marks)
Q2. This	s question is about displacement reactions.	
(a)	The displacement reaction between aluminium and iron oxide has a high activation energy.	
	What is meant by 'activation energy'?	
		-
		(1)
(b)	A mixture contains 1.00 kg of aluminium and 3.00 kg of iron oxide.	
	The equation for the reaction is:	
	$2 \text{ Al} + \text{Fe}_2\text{O}_3 \rightarrow 2 \text{ Fe} + \text{Al}_2\text{O}_3$	
	Show that aluminium is the limiting reactant.	
	Relative atomic masses (A_r): O = 16 AI = 27 Fe = 56	
		_

	-	
		(4)
Mag	gnesium displaces zinc from zinc sulfate solution.	(4,
(c)	Complete the ionic equation for the reaction.	
	You should include state symbols.	
	$Mg(s) + Zn^{2+}(aq) \rightarrow \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$	(2
(d)	Explain why the reaction between magnesium atoms and zinc ions is both oxidation and reduction.	
		(2)
	(Total 9 ma	

Q3.

This question is about the halogens.

Table 1 shows the melting points and boiling points of some halogens.

Table 1

Element	Melting point in °C	Boiling point in °C
Fluorine	-220	-188

Chlorine	-101	–35
Bromine	-7	59

(a) What is the state of bromine at 0 $^{\circ}$ C and at 100 $^{\circ}$ C?

Tick (✓) one box.

Gas	Gas	
Gas	Liquid	
Liquid	Gas	
Liquid	Liquid	
Solid	Gas	
Solid	Liquid	
xplain the trend in l	poiling points of the halog	gens shown in Table 1 .
xplain the trend in I	poiling points of the halog	gens shown in Table 1 .
xplain the trend in l	poiling points of the halog	gens shown in Table 1 .
xplain the trend in l	poiling points of the halog	gens shown in Table 1 .
xplain the trend in l	poiling points of the halog	gens shown in Table 1 .

eacts with each of the	e halogens in their gaseous form.	
	-	
diagram below shows	the apparatus used.	
	Iron	
ogen gas in —		ess halogen out
Give one reason wh	y this experiment should be done in a fur	ne cupboard
Explain why the reac group.	ctivity of the halogens decreases going do	own the
	ctivity of the halogens decreases going do	own the
	ctivity of the halogens decreases going do	own the
	ctivity of the halogens decreases going do	own the
	ctivity of the halogens decreases going do	own the
	ctivity of the halogens decreases going do	own the
	ctivity of the halogens decreases going do	own the
	ctivity of the halogens decreases going do	own the

in the above diagram.

The word equation for the reaction is:

iron + chlorine → iron chloride

The teacher weighed:

- the glass tube
- the glass tube and iron before the reaction
- the glass tube and iron chloride after the reaction.

Table 2 shows the teacher's results.

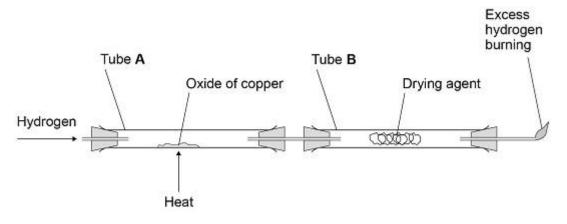
Table 2

(Total 16 marks)

	Mass in g
Glass tube	51.56
Glass tube and iron	56.04
Glass tube and iron chloride	64.56

Calculate the simplest whole number ratio of:

moles of iron atoms	s : moles of ch	lorine atoms	
Determine the balanced equation	on for the read	tion.	
Relative atomic masses (A _r):	CI = 35.5	Fe = 56	
Moles of iron atoms : moles of o	chlorine atoms	s = :	
Equation for the reaction			
			((

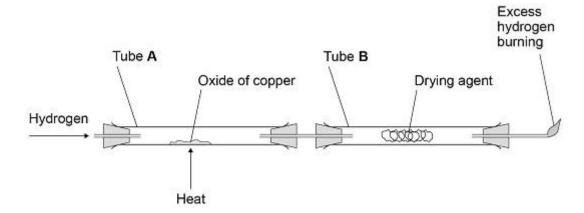

Q4.

Copper forms two oxides, Cu₂O and CuO

A teacher investigated an oxide of copper.

The following figure shows the apparatus.

(2)



This is the method used.

- 1. Weigh empty tube **A**.
- 2. Add some of the oxide of copper to tube **A**.
- 3. Weigh tube **A** and the oxide of copper.
- 4. Weigh tube **B** and drying agent.
- 5. Pass hydrogen through the apparatus and light the flame at the end.
- 6. Heat tube A for 2 minutes.
- 7. Reweigh tube **A** and contents.
- 8. Repeat steps 5 to 7 until the mass no longer changes.
- 9. Reweigh tube **B** and contents.
- 10. Repeat steps 1 to 9 with different masses of the oxide of copper.

Suggest one reason why step 8 is needed.	
Explain why the excess hydrogen must be burned off.	

The figure above is repeated here.

The table below shows the teacher's results.

	Mass in g
Tube A empty	105.72
Tube A and oxide of copper before heating	115.47
Tube A and contents after 2 minutes	114.62
Tube A and contents after 4 minutes	114.38
Tube A and contents after 6 minutes	114.38
Tube B and contents at start	120.93
Tube B and contents at end	123.38

When an oxide of copper is heated in a stream of hydrogen, the word equation for the reaction is:

copper oxide + hydrogen → copper + water

(c)	Determine the mass of copper and the mass of water produced in this
	experiment.

Use the table.

Mass of copper = _____ g

Mass of water = _____ g

(2)

(d) The teacher repeated the experiment with a different sample of the oxide of copper.

(3)

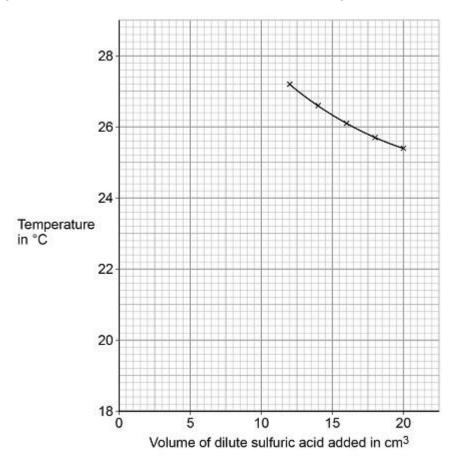
(Total 8 marks)

The teacher found that the oxide 0.72 g of water.	e of copper	produced 2.	54 g of copper and	
Two possible equations for the re	eaction are	:		
Equation 1: $Cu_2O + H_2 \rightarrow 2 Cu$	+ H ₂ O			
Equation 2: CuO + H ₂ \rightarrow Cu + H	H ₂ O			
Determine which is the correct e experiment.	quation for	the reaction	in the teacher's	
Relative atomic masses (A_r) :	H = 1	O = 16	Cu = 63.5	

Q5.

A student investigated the temperature change in the reaction between dilute sulfuric acid and potassium hydroxide solution.

This is the method used.


- 1. Measure 25.0 cm³ potassium hydroxide solution into a polystyrene cup.
- 2. Record the temperature of the solution.
- 3. Add 2.0 cm³ dilute sulfuric acid.
- 4. Stir the solution.
- 5. Record the temperature of the solution.
- 6. Repeat steps 3 to 5 until a total of 20.0 cm³ dilute sulfuric acid has been added.

(2)

The following table shows some of the student's results.

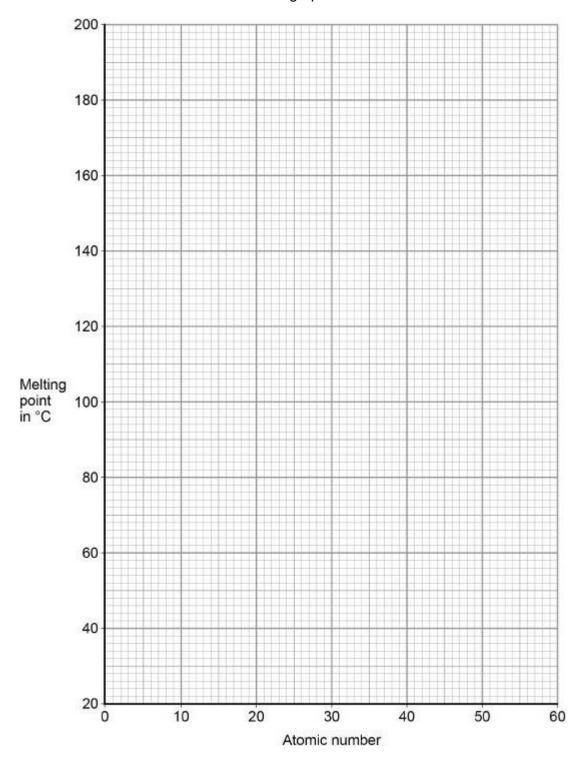
Volume of dilute sulfuric acid added in cm ³	Temperature in °C
0.0	18.9
2.0	21.7
4.0	23.6
6.0	25.0
8.0	26.1
10.0	27.1

The figure below shows some of the data from the investigation.

(b) Complete the figure:

- plot the data from the table
- draw a line of best fit through these points

extend the lines of best fit until they cross.	(4)
Determine the volume of dilute sulfuric acid needed to react completely with 25.0 cm³ of the potassium hydroxide solution.	
Use the figure above.	
Volume of dilute sulfuric acid to react completely = cm³	(4)
Determine the overall temperature change when the reaction is complete. Use the figure above.	(1)
Overall temperature change = °C	
	(1)
The student repeated the investigation.	
The student used solutions that had different concentrations from the first investigation.	
The student found that 15.5 cm³ of 0.500 mol/dm³ dilute sulfuric acid completely reacted with 25.0 cm³ of potassium hydroxide solution.	
The equation for the reaction is:	
$2 \hspace{0.1cm}KOH \hspace{0.1cm} + \hspace{0.1cm}H_2 SO_4 \to K_2 SO_4 \hspace{0.1cm} + \hspace{0.1cm} 2 \hspace{0.1cm}H_2 O$	
Calculate the concentration of the potassium hydroxide solution in mol/dm^3 and in g/dm^3	
Relative atomic masses (A_r): H = 1 O = 16 K = 39 (separate only)
<u> </u>	


	Concentration in mol/dm³ =	mol/dm³
	Concentration in g/dm³ =	g/dm³
		(Total 14 ma
This	question is about elements in Group 1.	
	acher burns sodium in oxygen.	
(a)	Complete the word equation for the reaction.	
	sodium + oxygen →	
(b)	What is the name of this type of reaction?	
	Tick one box.	
	Decomposition	
	Electrolysis	
	Oxidation	
	Precipitation	
(c)	The teacher dissolves the product of the reaction in water a universal indicator.	nd adds
	The universal indicator turns purple.	
	What is the pH value of the solution?	
	Tick one box.	

All alkalis	contain the same	ion.		
	ne formula of this i			
ick one	box.			
H+				
Na⁺				
OH-				
O ²⁻				
solution	of NaOH had a c	oncentration of ²	40 g/dm³	
Vhat mas	ss of NaOH would	there be in 250	cm ³ of the solution?	
		Mass	=	(
		ements in Group	o 1 show a trend.	
he meltii	ng points of the ele			
Γhe table	•	·	and melting points of	the
Γhe table	below shows the	·	and melting points of	the

Page	40	- c	04	ı
Page	1.5	OI	.5	ı

Sodium	11	98
Potassium	19	63
Rubidium	37	x
Caesium	55	29

Plot the data from the table on the graph below.

			(2)
(h)	Predict the	melting point, X , of rubidium, atomic number 37	
	Use the gra	aph above.	
		Melting point =	°C
			(1) (Total 10 marks)
Q7. Tita	nium is a tran	nsition metal.	
Tita	nium is extrad	cted from titanium dioxide in a two-stage industria	l process.
	Stage 1	$TiO_2 + 2 C + 2 Cl_2 \rightarrow TiCl_4 + 2 CO$	
	Stage 2	TiCl₄ + 4 Na → Ti + 4 NaCl	
(a)		ne hazard associated with Stage 1 .	
(α)	ouggoot o n	io nazara abboliatoa with otago 1.	
			(1)
(b)	Water must	t be kept away from the reaction in Stage 2 .	
		eason why it would be hazardous if water came in	to contact with
	sodium.		
			(1)
(c)	Suggest wh	ny the reaction in Stage 2 is carried out in an atmo	
()	argon and ı		•
(4)	Titonium ab	varida ia a liquid at room tamparatura	(2)
(d)		lloride is a liquid at room temperature.	
	Explain why temperature	y you would not expect titanium chloride to be a li e.	quid at room

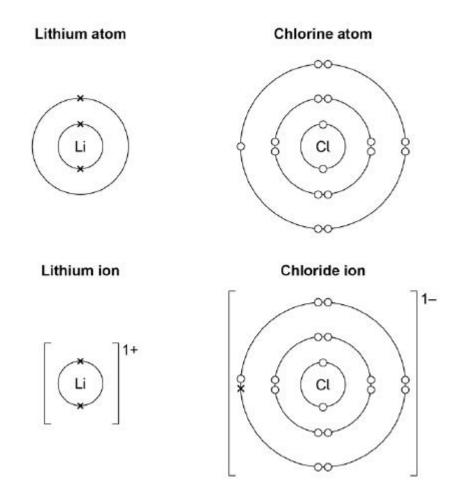
_	
_	
	age 2, sodium displaces titanium from titanium chloride.
	Sodium atoms are oxidised to sodium ions in this reaction.
	Why is this an oxidation reaction?
	Complete the half equation for the oxidation reaction.
	Na →+
	In Stage 2, 40 kg of titanium chloride was added to 20 kg of sodium.
	The equation for the reaction is:
	TiCl₄ + 4 Na → Ti + 4 NaCl
	Relative atomic masses (A_r): Na = 23 CI = 35.5 Ti = 48
	Explain why titanium chloride is the limiting reactant.
	You must show your working.

(h)	For a Stage 2 reaction the percentage yield was 92.3%
	The theoretical maximum mass of titanium produced in this batch was 13.5 kg.
	Calculate the actual mass of titanium produced. (separate only)
	Mass of titanium = kg
	(Total 15 ı
• Thie	question is about methanol.
(a)	Methanol is broken down in the body during digestion.
	What type of substance acts as a catalyst in this process?
	Tick one box.
	Amino acid
	Enzyme
	Ester
	Nucleotide
In in	dustry, methanol is produced by reacting carbon monoxide with hydrogen.
	equation for the reaction is:
1116	CO(g) + $2H_2(g) \rightleftharpoons CH_3OH(g)$
(b)	How many moles of carbon monoxide react completely with 4.0 × 10 ³ moles of hydrogen?
	Tick one box.

1.0	× 10 ³ moles	
2.0	× 10³ moles	
4.0	× 10³ moles	
8.0	× 10³ moles	
	reaction is ca	arried out at a temperature of 250 °C and a pressure of s.
The	forward reac	tion is exothermic.
Exp 250	lain what hap °C is used.	pens to the yield of methanol if a temperature higher than
 —_ A pr	essure of 100	atmospheres is used instead of atmospheric pressure.
The		atmospheres is used instead of atmospheric pressure. ure gives a greater yield of methanol and an increased
The rate	higher press	
The rate	higher press of reaction.	
The rate	higher press of reaction.	
The rate	higher press of reaction.	
The rate	higher press of reaction.	
The rate	higher press of reaction.	
The rate	higher press of reaction.	

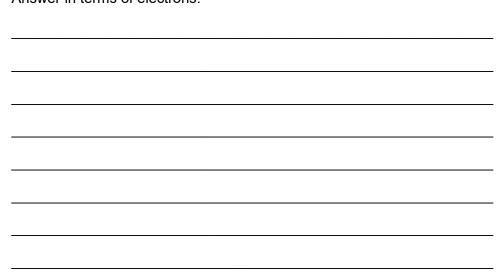
	yst is used in the reaction to produce methanol from carbon monoxide drogen.
•	xplain how a catalyst increases the rate of a reaction.
_	
	Suggest why a catalyst is used in this industrial process. Do not give answers in terms of increasing the rate of reaction.
	Suggest the effect of using the catalyst on the equilibrium yield of methanol.

Q9.


This question is about metal compounds.

(a) Lithium reacts with chlorine to produce lithium chloride.

When lithium atoms and chlorine atoms react to produce lithium chloride, lithium ions and chloride ions are formed.


The diagram shows the electronic structures of the atoms and ions.

The symbols \mathbf{o} and \mathbf{x} are used to represent electrons.

Describe what happens when a lithium atom reacts with a chlorine atom.

Answer in terms of electrons.

(4)

Zinc sulfate can be made by two methods.

The equations for the two methods are:

Method 1: $ZnO + H_2SO_4 \rightarrow ZnSO_4 + H_2O$

Calculate the _l 1 .	percentage atom economy for making zinc sulfate in Method
Use the equat	ion:
percentage ato	om economy =
- 100 - 100	relative formula mass of ZnSO ₄ ×100
elative formula	a mass of ZnO + relative formula mass of H ₂ SO ₄ ×100
Give your ans	wer to 3 significant figures.
Relative formu	Ila masses (M_r): ZnO = 81 H ₂ SO ₄ = 98 ZnSO ₄ = 161 (separ
	Percentage atom economy = %
	es a higher percentage atom economy for making zinc sulfate
than Method 2	2 .
	why it is important to use a reaction with a high atom
Give a reason	why it is important to use a reaction with a high atom
Give a reason	why it is important to use a reaction with a high atom
Give a reason economy. (se	why it is important to use a reaction with a high atom
Give a reason economy. (se	why it is important to use a reaction with a high atom eparate only)
Give a reason economy. (se	why it is important to use a reaction with a high atom eparate only) s 50 cm³ of a zinc sulfate solution of 80 g/dm³
Give a reason economy. (se	why it is important to use a reaction with a high atom eparate only) s 50 cm³ of a zinc sulfate solution of 80 g/dm³
Give a reason economy. (se	why it is important to use a reaction with a high atom eparate only) s 50 cm³ of a zinc sulfate solution of 80 g/dm³

(1)

(3)

(Total 10 marks)

_	4	\sim
u	1	U.

A scientist produces zinc iodide (Znl₂).

This is the method used.

- 1. Weigh 0.500 g of iodine.
- 2. Dissolve the iodine in ethanol.
- 3. Add an excess of zinc.
- 4. Stir the mixture until there is no further change.
- 5. Filter off the excess zinc.
- 6. Evaporate off the ethanol.
- (a) Ethanol is flammable.Suggest how the scientist could carry out **Step 6** safely.

-		

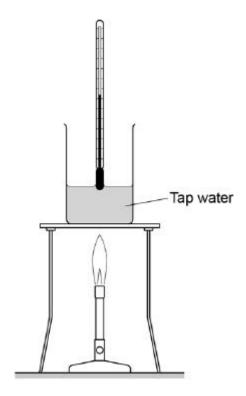
(b) Explain why the scientist adds excess zinc rather than excess iodine.

<u> </u>		

(c) Calculate the minimum mass of zinc that needs to be added to 0.500 g of iodine so that the iodine fully reacts.

The equation for the reaction is:

$$Zn + I_2 \rightarrow ZnI_2$$


Relative atomic masses (M_r): Zn = 65 I = 127

	Minimum mass of zinc =
dif	erent scientist makes zinc iodide by the same method.
e:	scientist obtains 12.5 g of zinc iodide.
e	percentage yield in this reaction is 92.0%.
)	What is the maximum theoretical mass of zinc iodide produced in this reaction? (separate only)
	Maximum theoretical mass =
١	Suggest one reason why the percentage yield in this reaction is not 100% (separate only)
	The scientist makes a solution of zinc iodide with a concentration of
	0.100 mol / dm ³
	Calculate the mass of zinc iodide (ZnI_2) required to make 250 cm ³ of this solution.
	Relative atomic masses (A_r): $Zn = 65$ $I = 127$ (separate only)

	Mass =
	(Total 14
1. Pota	able water is water that is safe to drink.
	water can be changed into potable water by desalination.
(a)	Name the substance removed from seawater by desalination.
41.	
(b)	Desalination requires large amounts of energy.
	Desalination is only used when there is no other source of potable water. Give one reason why.
Wat	er from lakes and rivers can be treated to make it potable.
(c)	The first stage is to filter the water from lakes and rivers.
	Why is the water filtered?
(d)	Chlorine gas is then added to the filtered water.
	Why is chlorine gas used to treat water?
(e)	Describe a test for chlorine gas.
	Give the result of the test if chlorine is present.
	Test

	Water	ome of their		
			рН	Mass of dissolved solid in g / dm³
	Tap w	ater	6.5	0.5
	Seawa	ater	8.1	35.0
	Pure v	vater		
).05 g).5 g			
5	5 g			
5	50 g			
В	oiling point	s can be use	d to show w	hether substances are p

(Total 10 marks)

Q12.

A student investigated the reactions of copper carbonate and copper oxide with dilute hydrochloric acid.

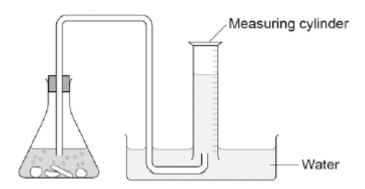
In both reactions one of the products is copper chloride.

(a)	Describe how a sample of copper chloride crystals could be made from copper carbonate and dilute hydrochloric acid.

A student wanted to make 11.0 g of copper chloride.	(
•	
The equation for the reaction is:	
$CuCO_3 + 2HCI \rightarrow CuCl_2 + H_2O + CO_2$	
Relative atomic masses, A_r : H = 1; C = 12; O = 16; CI = 35.5; Cu 63.5	ı =
Calculate the mass of copper carbonate the student should react with dilute hydrochloric acid to make 11.0 g of copper chloride.	
Mass of copper carbonate =	
The percentage yield of copper chloride was 79.1 %.	
Calculate the mass of copper chloride the student actually produced.	/congrete
Calculate the mass of copper chiloride the student actually produced.	(Separate
Actual mass of copper chloride produced =	g
Actual mass of copper chloride produced =	g
Actual mass of copper chloride produced =	g
Actual mass of copper chloride produced = Look at the equations for the two reactions:	g
Actual mass of copper chloride produced =	g g (g)

F	Percentage atom economy =	%
	onomy for Reaction 1 is 68.45 %. atom economies of the two reactions for making copper	
Give a reasor	n for the difference. (separate only)	
Oive a reason		

Q13.


Sodium carbonate reacts with dilute hydrochloric acid:

$$Na_2CO_3 + 2HCI \rightarrow 2NaCI + H_2O + CO_2$$

A student investigated the volume of carbon dioxide produced when different masses of sodium carbonate were reacted with dilute hydrochloric acid.

This is the method used.

- 1. Place a known mass of sodium carbonate in a conical flask.
- 2. Measure 10 cm³ of dilute hydrochloric acid using a measuring cylinder.
- 3. Pour the acid into the conical flask.
- 4. Place a bung in the flask and collect the gas until the reaction is complete.
- (a) The student set up the apparatus as shown in the figure below.

Identify the error in the way the student set up the apparatus.

Describe what would happen if the student used the apparatus shown.

(b) The student corrected the error.

The student's results are shown in the table below.

Mass of sodium carbonate in g	Volume of carbon dioxide gas in cm³
0.07	16.0
0.12	27.5
0.23	52.0
0.29	12.5
0.34	77.0
0.54	95.0
0.59	95.0
0.65	95.0

The result for 0.29 g of	sodium carbonate is anomaious
--------------------------	-------------------------------

Suggest what may have happened to cause this anomalous result.				

(2)

	rork could the student do to be more certain about the s of sodium carbonate needed to produce 95.0 cm³ of carbon
The carbon did	oxide was collected at room temperature and pressure.
The volume of 24.0 dm³.	one mole of any gas at room temperature and pressure is
How many mo	les of carbon dioxide is 95.0 cm³?
Give your ansv	ver in three significant figures. (separate only)
	mc
	more provement that could be made to the apparatus used that re accurate results.
would give mo	nprovement that could be made to the apparatus used that
would give mo	nprovement that could be made to the apparatus used that re accurate results.
would give mo	nprovement that could be made to the apparatus used that re accurate results.
would give mo	nprovement that could be made to the apparatus used that re accurate results.

Explain why the second student was correct.		
		•
		-
		-
		_
		•
		. (2)
	(Total 11	(2)