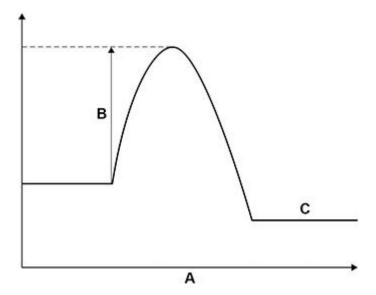
# Questions are for both separate science and combined science students unless indicated in the question

## Q1.

A student investigated the reactivity of metals with hydrochloric acid.

This is the method used.


- 1. Measure 50 cm<sup>3</sup> of hydrochloric acid into a polystyrene cup.
- 2. Measure the temperature of the hydrochloric acid.
- 3. Add one spatula of metal powder to the hydrochloric acid and stir.
- 4. Measure the highest temperature the mixture reaches.
- 5. Calculate the temperature increase for the reaction.
- 6. Repeat steps 1 to 5 three more times.
- 7. Repeat steps 1 to 6 with different metals.

The table below shows the student's results.

|           | Tem     | Mean    |         |         |                                  |
|-----------|---------|---------|---------|---------|----------------------------------|
| Metal     | Trial 1 | Trial 2 | Trial 3 | Trial 4 | temperature<br>increase in<br>°C |
| Cobalt    | 6       | 7       | 5       | 9       | 7                                |
| Magnesium | 54      | 50      | 37      | 55      | Х                                |
| Zinc      | 18      | 16      | 18      | 20      | 18                               |

| (a) | Calculate the mean temperature increase <b>X</b> for magnesium in the table above. |         |     |
|-----|------------------------------------------------------------------------------------|---------|-----|
|     | Do <b>not</b> include the anomalous result in your calculation.                    |         |     |
|     |                                                                                    | _       |     |
|     |                                                                                    | _       |     |
|     | X =                                                                                | -<br>°C |     |
| (b) | Determine the order of reactivity for the metals cobalt, magnesium and             |         | (2) |
| ( ) | zinc.                                                                              |         |     |
|     | Use the table above.                                                               |         |     |
|     | Most reactive                                                                      |         |     |

|                | Least reactive                                                                                             | (' |
|----------------|------------------------------------------------------------------------------------------------------------|----|
| c)             | The range of measurements either side of the mean shows the uncertainty in the mean temperature increase.  | •  |
|                | Complete the sentence.                                                                                     |    |
|                | Use the table above.                                                                                       |    |
|                | The mean temperature increase for zinc is 18 ±°C                                                           | (1 |
| d)             | What type of variable is the volume of hydrochloric acid in this investigation?                            |    |
|                | Tick (✓) <b>one</b> box.                                                                                   |    |
|                | Control                                                                                                    |    |
|                | Dependent                                                                                                  |    |
|                | Independent                                                                                                |    |
|                |                                                                                                            | (  |
| <del>)</del> ) | Suggest <b>one</b> way of improving <b>step 3</b> in the method to give results which are more repeatable. |    |
|                |                                                                                                            |    |
|                |                                                                                                            |    |
|                |                                                                                                            |    |
|                |                                                                                                            | (1 |
| )              | The figure below shows a reaction profile for the reaction of magnesium with hydrochloric acid.            |    |



What do labels A, B and C represent on the figure above?

Choose answers from the box.

| - 1        | activation energy | energy               | overall energy change |
|------------|-------------------|----------------------|-----------------------|
|            | products          | progress of reaction | reactants             |
| <b>A</b> _ |                   |                      |                       |
| В_         |                   |                      |                       |
| <b>c</b> _ |                   |                      |                       |
|            |                   |                      | (Total 9 r            |

## Q2.

This question is about the extraction of metals.

Element **R** is extracted from its oxide by reduction with hydrogen.

The equation for the reaction is:

$$3 H_2 + RO_3 \rightarrow R + 3 H_2O$$

(a) The sum of the relative formula masses ( $M_r$ ) of the reactants (3 H<sub>2</sub> + RO<sub>3</sub>) is 150

Calculate the relative atomic mass (A<sub>r</sub>) of R.

Relative atomic masses  $(A_r)$ : H = 1 O = 16

|                                    | Re                                       | lative atomic r                                 | mass ( <i>A</i> <sub>r</sub> ) | of <b>R</b> =       |               |
|------------------------------------|------------------------------------------|-------------------------------------------------|--------------------------------|---------------------|---------------|
| dan Charle                         | as and B                                 |                                                 |                                |                     |               |
| dentify ele                        | ment R.                                  |                                                 |                                |                     |               |
| You should                         |                                          | (-)                                             |                                |                     |               |
| -                                  | answer to part (<br>eriodic table.       | (a)                                             |                                |                     |               |
| 0                                  |                                          |                                                 | Identity                       | of <b>R</b> =       |               |
|                                    |                                          |                                                 |                                |                     |               |
| Carbon is ι                        | used to extract ti                       | in (Sn) from tir                                | n oxide (S                     | SnO <sub>2</sub> ). |               |
| The equati                         | on for the reacti                        | on is:                                          |                                |                     |               |
|                                    | Sn                                       | $O_2 + C \rightarrow Sn$                        | + CO <sub>2</sub>              |                     |               |
| Calculate t                        | he percentage a                          | atom economy                                    | for extra                      | cting tin in th     | nis reaction. |
| Relative at                        |                                          |                                                 |                                |                     |               |
| veiauve au                         | omic masses (A                           | <i>l</i> <sub>r</sub> ): C = 12                 | O = 16                         | Sn = 119            | (separate     |
| relative at                        |                                          | A <sub>r</sub> ): C = 12                        |                                |                     |               |
|                                    | Pe                                       |                                                 |                                |                     |               |
|                                    |                                          |                                                 |                                |                     |               |
| Tungsten (                         | Pe                                       | ercentage ator                                  | m econom                       | ny =                |               |
| Fungsten ('                        | Pe<br>W) is a metal.<br>s extracted from | ercentage ator                                  | m econom                       | ny =                |               |
| Fungsten ('Tungsten is the tungste | Pe<br>W) is a metal.<br>s extracted from | ercentage ator  tungsten oxice m the extraction | m economide (WO3).             | ny =                | eparated fro  |

Q3.

| 1 | Carbon   | Low  | Tungsten solid<br>Carbon dioxide gas<br>Tungsten carbide<br>solid |
|---|----------|------|-------------------------------------------------------------------|
| 2 | Hydrogen | High | Tungsten solid<br>Water vapour                                    |
| 3 | Iron     | Low  | Tungsten solid Iron oxide solid                                   |

|           |                                                 |                       | Oxido Colid              |
|-----------|-------------------------------------------------|-----------------------|--------------------------|
|           | Evaluate the three possible oxide.              | methods for extractin | g tungsten from tungster |
|           |                                                 |                       |                          |
|           |                                                 |                       |                          |
|           |                                                 |                       |                          |
|           |                                                 |                       |                          |
|           |                                                 |                       |                          |
|           |                                                 |                       |                          |
|           |                                                 |                       |                          |
|           |                                                 |                       |                          |
|           |                                                 |                       | (Total 10                |
| s         | question is about cycloalken                    | es.                   |                          |
| clo<br>bo | palkenes are ring-shaped hyd<br>on-carbon bond. | drocarbon molecules   | containing a double      |
| clo       | palkenes react in a similar wa                  | ay to alkenes.        |                          |
|           | Describe a test for the doub molecules.         | le carbon-carbon bon  | d in cycloalkene         |
|           | Give the result of the test.                    | (separate only)       |                          |
|           |                                                 |                       |                          |

| Dogult |   |
|--------|---|
| Result |   |
|        |   |
|        | ( |

(b) The table below shows the name and formula of three cycloalkenes.

| Name         | Formula                        |
|--------------|--------------------------------|
| Cyclobutene  | C <sub>4</sub> H <sub>6</sub>  |
| Cyclopentene | C₅H <sub>8</sub>               |
| Cyclohexene  | C <sub>6</sub> H <sub>10</sub> |

Determine the general formula for cycloalkenes. (separate only)

General formula = \_\_\_\_\_\_\_(1)

Figure 1 shows the displayed structural formula of cyclohexene, C<sub>6</sub>H<sub>10</sub>

Figure 1

Chlorine reacts with cyclohexene to produce a compound with the formula  $C_6H_{10}Cl_2$ 

(c) Complete Figure 2 to show the displayed structural formula of  $C_6H_{10}Cl_2$ 

(separate only)

Figure 2

(2)

|      |                                                                      |                                         | _                      |                  |
|------|----------------------------------------------------------------------|-----------------------------------------|------------------------|------------------|
|      | Relative a                                                           | tomic masses ( <i>A</i> <sub>r</sub> ): | H = 1 C = 12 Cl = 3    | 35.5             |
|      |                                                                      |                                         |                        |                  |
|      |                                                                      |                                         |                        |                  |
|      |                                                                      | F                                       | Percentage by mass =   | %                |
|      |                                                                      |                                         |                        | (Total 8 n       |
|      |                                                                      |                                         |                        |                  |
| Γhis | question is                                                          | about the elements in                   | Group 7 of the period  | ic table.        |
| Γabl | e 1 shows                                                            | the melting points and                  | boiling points of some | of the elements. |
|      |                                                                      | Table 1                                 |                        |                  |
| Elei | ment                                                                 | Melting point in °C                     | Boiling point in °C    |                  |
| Fluc | orine                                                                | -220                                    | -188                   |                  |
|      |                                                                      |                                         | 25                     |                  |
| Chlo | orine                                                                | <b>–101</b>                             | <del>-</del> 35        |                  |
|      | mine                                                                 | -101<br>-7                              | -35<br>59              |                  |
| Broi | mine                                                                 |                                         | 59                     |                  |
| Broi | mine                                                                 | –7 e state of bromine at                | 59                     |                  |
| Broi | mine<br>What is th                                                   | –7 e state of bromine at €              | 59                     |                  |
|      | mine<br>What is th<br>Use <b>Table</b>                               | –7 e state of bromine at €              | 59                     |                  |
| Broi | mine<br>What is th<br>Use <b>Table</b><br>Tick ( <b>√</b> ) <b>c</b> | –7 e state of bromine at €              | 59                     |                  |
| Broi | mine  What is th  Use <b>Table</b> Tick (✓) o                        | –7 e state of bromine at €              | 59                     |                  |

Use Table 1.

|      | Temperature = °C                                                                                                           | (1) |
|------|----------------------------------------------------------------------------------------------------------------------------|-----|
| (c)  | Complete the sentences.                                                                                                    |     |
|      | Going down Group 7 the melting points                                                                                      |     |
|      | This is because the size of the molecules increases so the intermolecular forces                                           |     |
|      | ·                                                                                                                          | (2) |
| A te | acher investigated the reaction of iron with chlorine.                                                                     |     |
| The  | diagram below shows the apparatus used.                                                                                    |     |
|      | Iron                                                                                                                       |     |
| Chl  | lorine gas in   Excess chlorine gas out  Heat  Glass tube                                                                  |     |
| (d)  | Why did the teacher do the investigation in a fume cupboard?                                                               |     |
|      | Tick (✓) <b>one</b> box.                                                                                                   |     |
|      | Chlorine gas is coloured.                                                                                                  |     |
|      | Chlorine gas is flammable.                                                                                                 |     |
|      | Chlorine gas is toxic.                                                                                                     |     |
| (e)  | The word equation for the reaction is:                                                                                     | (1) |
|      | iron + chlorine → iron chloride                                                                                            |     |
|      | Iron chloride is a solid.                                                                                                  |     |
|      | <ul><li>The teacher weighed the glass tube and contents:</li><li>before the reaction</li><li>after the reaction.</li></ul> |     |

Give **one** reason for your answer.

reaction?

What happened to the mass of the glass tube and contents during the

|    | Reason         |                                                            |                    |
|----|----------------|------------------------------------------------------------|--------------------|
|    |                |                                                            |                    |
|    |                |                                                            |                    |
| Э  | teacher re     | peated the investigation with bromine gas and              | d with iodine gas. |
| b  | e 2 shows      | the results.                                               |                    |
|    |                | Table 2                                                    |                    |
| le | ment           | Observation                                                |                    |
| hl | orine          | Iron burns vigorously with an orange glow                  |                    |
| ro | mine           | Iron burns with an orange glow                             |                    |
| di | ne             | Iron slowly turns darker                                   |                    |
|    | Fluorine is    | s above chlorine in Group 7.                               |                    |
|    | Predict w      | hat you would observe when fluorine gas rea                | cts with iron.     |
|    | Use <b>Tab</b> | le 2.                                                      |                    |
|    |                |                                                            |                    |
|    |                |                                                            |                    |
|    |                |                                                            |                    |
| )  | Balance        | the equation for the reaction between iron and             | d bromine.         |
|    |                | $2Fe + \underline{\hspace{1cm}} Br_2 \rightarrow 2 FeBr_3$ |                    |
| 1) | Calculate      | the relative formula mass $(M_r)$ of FeBr <sub>3</sub>     |                    |
|    | Relative       | atomic masses ( $A_r$ ): Fe = 56 Br = 80                   |                    |
|    |                |                                                            |                    |

Q5.

(1)

This question is about silver iodide.

Silver iodide is produced in the reaction between silver nitrate solution and sodium iodide solution.

The equation for the reaction is:

$$AgNO_3(aq) + NaI(aq) \rightarrow AgI(s) + NaNO_3(aq)$$

(a) A student investigated the law of conservation of mass.

This is the method used.

- 1. Pour silver nitrate solution into a beaker labelled **A**.
- 2. Pour sodium iodide solution into a beaker labelled B.
- 3. Measure the masses of both beakers and their contents.
- 4. Pour the solution from beaker **B** into beaker **A**.
- 5. Measure the masses of both beakers and their contents again.

The table below shows the student's results.

|                              | Mass before<br>mixing in g | Mass after mixing in g |
|------------------------------|----------------------------|------------------------|
| Beaker <b>A</b> and contents | 78.26                      | 108.22                 |
| Beaker <b>B</b> and contents | 78.50                      | 48.54                  |

| Explain how the results demonstrate the law of conservation of mass.                                            |     |
|-----------------------------------------------------------------------------------------------------------------|-----|
| You should use data from table above in your answer.                                                            |     |
|                                                                                                                 |     |
|                                                                                                                 |     |
|                                                                                                                 |     |
|                                                                                                                 | (2) |
| Suggest how the student could separate the insoluble silver iodide from the mixture at the end of the reaction. |     |
|                                                                                                                 |     |
|                                                                                                                 |     |

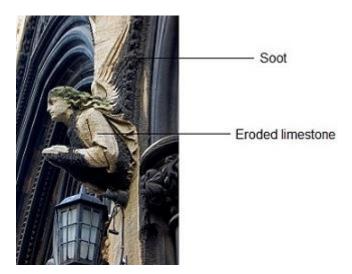
The student purified the separated silver iodide.

This is the method used.

(b)

| Warm the silver iodide.                                                                             |       |
|-----------------------------------------------------------------------------------------------------|-------|
| Suggest <b>one</b> impurity that was removed by rinsing with water.                                 |       |
|                                                                                                     |       |
|                                                                                                     |       |
| Suggest why the student warmed the silver iodide.                                                   |       |
|                                                                                                     |       |
| Calculate the percentage atom economy for the production of silver iod                              | lide  |
| in this reaction.                                                                                   |       |
| The equation for the reaction is:                                                                   |       |
| $AgNO_3(aq) + NaI(aq) \rightarrow AgI(s) + NaNO_3(aq)$                                              |       |
| Give your answer to 3 significant figures.                                                          |       |
| Relative formula masses:                                                                            |       |
| $(M_r)$ : AgNO <sub>3</sub> = 170 NaI = 150 AgI = 235 NaNO <sub>3</sub> = 85 (s                     | separ |
|                                                                                                     |       |
|                                                                                                     |       |
|                                                                                                     |       |
|                                                                                                     |       |
|                                                                                                     |       |
|                                                                                                     |       |
|                                                                                                     |       |
|                                                                                                     |       |
| Percentage atom economy (3 significant figures) =                                                   | %     |
|                                                                                                     |       |
| Give <b>one</b> reason why reactions with a high atom economy are used in industry. (separate only) |       |

(1) (Total 10 marks)


## Q6.

This question is about atmospheric pollution.

The image below shows a limestone carving which has been damaged by atmospheric pollution.

The carving has been:

- blackened by soot
- eroded where the limestone has reacted with atmospheric pollutants.



(a) What reacted with the limestone to cause the erosion?

Acid rain

Ammonia

Carbon monoxide

Oxygen

Tick  $(\checkmark)$  one box.

(1)

(b) Soot is produced by the incomplete combustion of diesel oil.

Complete the sentences.

Choose answers from the box.

(3)

(Total 8 marks)

| ammonia           | carbon                               | me                      | thane            |
|-------------------|--------------------------------------|-------------------------|------------------|
| n                 | itrogen                              | oxygen                  |                  |
| Incomplete com    | bustion happens whe                  | n there is not enouç    | gh               |
| Incomplete com    | bustion produces part                | ticles of               | ·                |
| Complete the se   | ntence.                              |                         |                  |
| Particles of soot | in the atmosphere ca                 | use global              | ·                |
| Carbon monoxid    | e is produced by the                 | incomplete combus       | tion of methane. |
| Balance the equ   | ation for the reaction.              |                         |                  |
| 2                 | CH <sub>4</sub> + 3 O <sub>2</sub> → | CO + 4 H <sub>2</sub> O |                  |
| Car engines wor   | k at high temperature                | es.                     |                  |
| Complete the se   | ntences.                             |                         |                  |
| Choose answers    | s from the box.                      |                         |                  |
| air               | methane                              | oxides of r             | nitrogen         |
| oxygen            | petrol                               | sulfur di               | oxide            |
| In car engines, r | nitrogen is present.                 |                         |                  |
| The nitrogen in   | car engines comes fro                | om                      |                  |
| At high tempera   | tures, the nitrogen rea              | acts with               |                  |
| This reaction pro | nducos                               |                         |                  |

## Q7.

A student investigated the reaction between lumps of calcium carbonate and dilute hydrochloric acid.

This is the method used.

- 1. Pour 100 cm<sup>3</sup> of dilute hydrochloric acid into a conical flask.
- 2. Place the conical flask on a balance.

| 3. Ad | ld 2 g of calcium carbonate lumps to                    | the conica    | ıl flask.             |                       |          |
|-------|---------------------------------------------------------|---------------|-----------------------|-----------------------|----------|
| 4. Wa | ait until the calcium carbonate stops                   | reacting.     |                       |                       |          |
| 5. Re | ecord the decrease in mass of the co                    | onical flask  | and conten            | ts.                   |          |
| 6. Re | epeat steps 1 to 5 three more times.                    |               |                       |                       |          |
| The e | equation for the reaction is:                           |               |                       |                       |          |
|       | $CaCO_3(\mathbf{X}) + 2HCI(aq) \rightarrow C$           | CaCl₂(aq) ·   | + CO <sub>2</sub> (g) | + H <sub>2</sub> O(I) |          |
| (a)   | What is the state symbol <b>X</b> in the e              |               | ισ,                   | ,,                    |          |
|       | Tick (√) <b>one</b> box.                                |               |                       |                       |          |
|       | aq g                                                    | I             | s                     |                       | 44)      |
| The f | following table shows the student's                     | results.      |                       |                       | (1)      |
|       |                                                         | Result 1      | Result 2              | Result 3              | Result 4 |
|       | Decrease in mass of the conical flask and contents in g | 0.84          | 0.79                  | 0.86                  | 0.47     |
| (b)   | Why does the mass of the conical reaction?              | flask and co  | ontents dec           | rease durin           | g the    |
|       | Tick (✓) <b>one</b> box.                                |               |                       |                       |          |
|       | A gas escapes.                                          |               |                       |                       |          |
|       | A new solution is made.                                 |               |                       |                       |          |
|       | The dilute hydrochloric acid is use                     | ed up.        |                       |                       |          |
|       | The calcium carbonate lumps dec size.                   | rease in      |                       |                       | (1)      |
| (c)   | What is the range of the four result                    | s in the tabl | le above?             |                       | (1)      |
|       | From                                                    |               | g to                  |                       | •        |
| (d)   | Calculate the mean decrease in m                        | acc of the o  | onical flack          | and contar            | (1)      |

| Use the                                               | above.                                                 | _      |
|-------------------------------------------------------|--------------------------------------------------------|--------|
|                                                       | Mean decrease in mass =                                | —<br>g |
| teacher der                                           | nonstrated the investigation.                          |        |
|                                                       | sed different masses of calcium carbonate.             |        |
| e following                                           | graph shows the teacher's results.                     |        |
|                                                       | 5-<br>4-                                               |        |
| Decrease<br>in mass<br>of the<br>conical<br>flask and | 3-                                                     |        |
| contents<br>in g                                      | 2                                                      |        |
|                                                       | 1                                                      |        |
|                                                       | 0 1 2 3 4 5 6 7 8 9 10  Mass of calcium carbonate in g |        |
| What ty                                               | pe of variable is the mass of calcium carbonate?       |        |
| ")                                                    |                                                        |        |
| Tick (✓)                                              | one box.                                               |        |

|    |       | Dependent                                                                                                      |             |
|----|-------|----------------------------------------------------------------------------------------------------------------|-------------|
|    |       | Independent                                                                                                    |             |
|    |       |                                                                                                                | (1)         |
|    | Use t | the graph to answer parts (f) and (g)                                                                          |             |
|    | (f)   | Complete the sentence.                                                                                         |             |
|    |       | As the mass of calcium carbonate used increases, the decrease in mass of                                       |             |
|    |       | the conical flask and contents                                                                                 |             |
|    |       |                                                                                                                | (1)         |
|    | (g)   | What is the decrease in mass of the conical flask and contents when a 3 g sample of calcium carbonate is used? |             |
|    |       | Decrease in mass = g                                                                                           | <i>(</i> 4) |
|    |       | (Total 8 ma                                                                                                    | (1)<br>rks) |
|    |       |                                                                                                                |             |
| Q8 |       | question is about the extraction of metals.                                                                    |             |
|    | (a)   | Tungsten is a metal.                                                                                           |             |
|    | ()    | The symbol of tungsten is W                                                                                    |             |
|    |       | Tungsten is produced from tungsten oxide by reaction with hydrogen.                                            |             |
|    |       | The equation for the reaction is:                                                                              |             |
|    |       | WO <sub>3</sub> + 3 H <sub>2</sub> $\rightarrow$ W + 3 H <sub>2</sub> O                                        |             |
|    |       | Calculate the percentage atom economy when tungsten is produced in this reaction.                              |             |
|    |       | Use the equation:                                                                                              |             |
|    |       | percentage atom economy = $\frac{184}{(M_r \text{ WO}_3) + (3 \times M_r \text{ H}_2)} \times 100$             |             |
|    |       | Relative formula masses ( $M_r$ ): $WO_3 = 232$ $H_2 = 2$ (separate only)                                      |             |
|    |       |                                                                                                                |             |

|    | Percentage atom economy =%                                                                                              |
|----|-------------------------------------------------------------------------------------------------------------------------|
| ın | ninium is extracted from aluminium oxide.                                                                               |
|    | 38% of a rock sample is aluminium oxide.                                                                                |
|    | Calculate the mass of aluminium oxide in 40 kg of the rock sample.                                                      |
|    |                                                                                                                         |
|    | Mass of aluminium oxide = kg                                                                                            |
|    | The formula of aluminium oxide is Al <sub>2</sub> O <sub>3</sub>                                                        |
|    | Calculate the relative formula mass $(M_r)$ of aluminium oxide.                                                         |
|    | Relative atomic masses $(A_r)$ : $O = 16$ $AI = 27$                                                                     |
|    |                                                                                                                         |
|    | Relative formula mass (M <sub>r</sub> ) =                                                                               |
|    | 60.0 kg of aluminium oxide produces a maximum of 31.8 kg of aluminium.                                                  |
|    | In an extraction process only 28.4 kg of aluminium is produced from 60.0 kg of aluminium oxide.                         |
|    | Calculate the percentage yield. (separate only)                                                                         |
|    | Give your answer to 3 significant figures.                                                                              |
|    | Use the equation:                                                                                                       |
|    | percentage yield = $\frac{\text{mass of product actually made}}{\text{maximum theoretical mass of product}} \times 100$ |

|     | Percentage yield =% (3)                                                                 |
|-----|-----------------------------------------------------------------------------------------|
| (e) | Extracting metals by electrolysis is a very expensive process.                          |
|     | Explain why aluminium is extracted using electrolysis and not by reduction with carbon. |
|     |                                                                                         |
|     |                                                                                         |
|     |                                                                                         |
|     | (2)                                                                                     |
|     | (Total 11 marks)                                                                        |
| Q9. |                                                                                         |
| The | halogens are elements in Group 7.                                                       |
| (a) | Bromine is in Group 7.                                                                  |
|     | Give the number of electrons in the outer shell of a bromine atom.                      |
|     |                                                                                         |
| (b) | Bromine reacts with hydrogen. The gas hydrogen bromide is produced.                     |
|     | What is the structure of hydrogen bromide?                                              |
|     | Tick <b>one</b> box.                                                                    |
|     | Giant covalent                                                                          |
|     | Ionic lattice                                                                           |

| Metallic                                              | structure                                             |                                                                  |                                                                           |          |
|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------|----------|
| Small m                                               | olecule                                               |                                                                  |                                                                           |          |
| c) What is t                                          | he formula for fluor                                  | rine gas?                                                        |                                                                           |          |
| Tick one                                              | box.                                                  |                                                                  |                                                                           |          |
| F                                                     |                                                       |                                                                  |                                                                           |          |
| F <sub>2</sub>                                        |                                                       |                                                                  |                                                                           |          |
| F <sup>2</sup>                                        |                                                       |                                                                  |                                                                           |          |
| 2F                                                    |                                                       |                                                                  |                                                                           |          |
|                                                       |                                                       |                                                                  |                                                                           |          |
|                                                       |                                                       | 141 1 41                                                         |                                                                           |          |
|                                                       | es solutions of halo<br>w shows the stude             | gens with solutions nt's observations.                           | of their salts.                                                           |          |
|                                                       |                                                       |                                                                  | Potassium iodide (colourless)                                             |          |
| he table belo                                         | w shows the stude  Potassium  chloride                | nt's observations.  Potassium bromide                            | Potassium<br>iodide                                                       |          |
| he table below<br>Chlorine<br>colourless)             | w shows the stude  Potassium  chloride                | Potassium bromide (colourless) Solution turns                    | Potassium iodide (colourless) Solution turns                              |          |
| Chlorine (colourless) Bromine (orange) odine          | Potassium chloride (colourless)                       | Potassium bromide (colourless) Solution turns                    | Potassium iodide (colourless) Solution turns brown Solution turns         |          |
| Chlorine (colourless) Bromine (orange) lodine (brown) | Potassium chloride (colourless)  No change  No change | Potassium bromide (colourless)  Solution turns orange  No change | Potassium iodide (colourless)  Solution turns brown  Solution turns brown | Group 7. |
| Chlorine (colourless) Bromine (orange) lodine (brown) | Potassium chloride (colourless)  No change            | Potassium bromide (colourless)  Solution turns orange  No change | Potassium iodide (colourless)  Solution turns brown  Solution turns brown | Group 7. |
| Chlorine (colourless) Bromine (orange) lodine (brown) | Potassium chloride (colourless)  No change  No change | Potassium bromide (colourless)  Solution turns orange  No change | Potassium iodide (colourless)  Solution turns brown  Solution turns brown | Group 7. |

|                                       | ne to produce titanium chloride from titanium dioxide.             |
|---------------------------------------|--------------------------------------------------------------------|
|                                       | ve formula mass ( $M_r$ ) of titanium dioxide, TiO <sub>2</sub> ?  |
|                                       | nasses $(A_r)$ : $O = 16$ $Ti = 48$                                |
| Tick <b>one</b> box.                  |                                                                    |
| 64                                    |                                                                    |
| 80                                    |                                                                    |
| 128                                   |                                                                    |
| 768                                   |                                                                    |
|                                       |                                                                    |
| The company cal<br>kg of titanium chl | culates that 500 g of titanium dioxide should produce 1.2 oride.   |
| However, the cor<br>900 g of titanium | npany finds that 500 g of titanium dioxide only produces chloride. |
| Calculate the per                     | centage yield. (separate only)                                     |
|                                       |                                                                    |
|                                       |                                                                    |
|                                       |                                                                    |
|                                       |                                                                    |

# Q10.

A student investigated the mass of copper oxide produced by heating copper carbonate.

This is the method used.

(1)

- 1. Weigh an empty test tube.
- 2. Weigh 2.00 g of copper carbonate into the test tube.
- 3. Heat the copper carbonate until there appears to be no further change.
- 4. Re-weigh the test tube and copper oxide produced.
- 5. Subtract the mass of the empty tube to find the mass of copper oxide.
- 6. Repeat steps 1–5 twice.
- 7. Repeat steps 1–6 with different masses of copper carbonate.

The table below shows the student's results.

| Mass of copper | Mass of copper oxide in g |         |         |      |  |
|----------------|---------------------------|---------|---------|------|--|
| carbonate in g | Trial 1                   | Trial 2 | Trial 3 | Mean |  |
| 2.00           | 1.29                      | 1.27    | 1.31    | 1.29 |  |
| 4.00           | 2.89                      | 2.57    | 2.59    | 2.58 |  |
| 6.00           | 3.85                      | 3.90    | 3.87    | 3.87 |  |
| 8.00           | 5.12                      | 5.15    | 5.09    | Х    |  |
| 10.00          | 6.42                      | 6.45    | 6.45    | 6.44 |  |

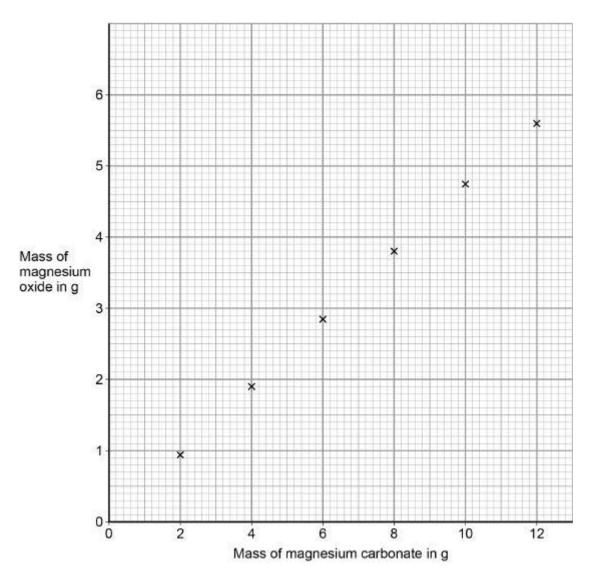
The equation for the reaction is:

$$CuCO_3(s) \rightarrow CuO(s) + CO_2(q)$$

| Complete the sentence.  The state symbol shows carbon dioxide is a  Why do the contents of the test tube lose mass in the investigation? |           |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                                          |           |
| Why do the contents of the test tube lose mass in the investigation?                                                                     | tigation? |
|                                                                                                                                          |           |
|                                                                                                                                          |           |
| Calculate the mean mass <b>X</b> in the table above.                                                                                     |           |

(d) One of the results in the table above is anomalous.

## **AQA Chemistry GCSE - Chemical Measurements**


|   | Which result is anomalous?                                                             |  |
|---|----------------------------------------------------------------------------------------|--|
|   | Mass of copper carbonate g Trial                                                       |  |
|   |                                                                                        |  |
| ) | Suggest how the investigation could be improved to make sure the reaction is complete. |  |
|   |                                                                                        |  |
|   |                                                                                        |  |
|   |                                                                                        |  |
|   |                                                                                        |  |

Another student repeated the investigation using magnesium carbonate instead of copper carbonate.

The word equation for the reaction is:

 $magnesium \ carbonate \longrightarrow magnesium \ oxide + carbon \ dioxide$ 

The graph below shows the results of the investigation.



(f) Draw a line of best fit on the graph above.

(1)

(g) Determine the mass of magnesium oxide produced by 8.4 g of magnesium carbonate.

Use the graph above.

(h) Calculate the mass of magnesium oxide produced when 168 g of magnesium carbonate is heated.

Use your answer to part (g)

| Mass of magnesium oxide produced = | g                |
|------------------------------------|------------------|
|                                    | (2)              |
|                                    | (Total 10 marks) |

# Q11.

Older cars are tested each year to measure the amount of pollutants contained in exhaust fumes.

The table below shows the maximum allowed percentages of exhaust pollutants for petrol cars.

| Age of car |                    | owed percentage<br>aust pollutant |  |
|------------|--------------------|-----------------------------------|--|
| in years   | Carbon<br>monoxide | Unburned hydrocarbons             |  |
| 16-24      | 0.30               | 0.02                              |  |
| 3-16       | 0.20               | 0.02                              |  |

|    | ro reasons why the maximum allowed percentage of carbon has been decreased for newer cars. |
|----|--------------------------------------------------------------------------------------------|
|    |                                                                                            |
|    |                                                                                            |
|    |                                                                                            |
| )  |                                                                                            |
| 2. |                                                                                            |

| l) | es of nitrogen are also pollutants contained in exhaust fumes.  Describe how oxides of nitrogen are produced when petrol is burned in car |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ') | engines.                                                                                                                                  |  |  |  |
|    |                                                                                                                                           |  |  |  |
|    |                                                                                                                                           |  |  |  |
|    |                                                                                                                                           |  |  |  |
|    |                                                                                                                                           |  |  |  |
|    | lytic converters are fitted to car exhausts to reduce the amount of pollutants ased into the atmosphere.                                  |  |  |  |
| )  | Nitrogen dioxide is an oxide of nitrogen.                                                                                                 |  |  |  |
|    | Nitrogen dioxide reacts to produce nitrogen and oxygen in catalytic converters.                                                           |  |  |  |
|    | Complete the equation for this reaction.                                                                                                  |  |  |  |
|    | The equation should be balanced.                                                                                                          |  |  |  |
|    | $\_\_NO_2(g) \rightarrow \_\_\_O_2(g)$                                                                                                    |  |  |  |
|    | Give <b>two</b> effects of atmospheric pollution which are reduced by using catalytic converters.                                         |  |  |  |
|    | 1.                                                                                                                                        |  |  |  |
|    |                                                                                                                                           |  |  |  |
|    |                                                                                                                                           |  |  |  |
|    | 2.                                                                                                                                        |  |  |  |
|    | 2.                                                                                                                                        |  |  |  |
|    | 2.                                                                                                                                        |  |  |  |
| )  | The catalyst in catalytic converters is a mixture of three elements.                                                                      |  |  |  |
| )  |                                                                                                                                           |  |  |  |

(1)

| Halogens          |                         |
|-------------------|-------------------------|
| Noble gases       |                         |
| Transition metals |                         |
|                   | (1)<br>(Total 12 marks) |

#### Q12.

A student investigated the law of conservation of mass.

The law of conservation of mass states that the mass of the products is equal to the mass of the reactants.

This is the method used.

- 1. Pour lead nitrate solution into a beaker labelled A.
- 2. Pour potassium chromate solution into a beaker labelled **B**.
- 3. Measure the mass of both beakers and contents.
- 4. Pour the solution from beaker B into beaker A.
- 5. Measure the mass of both beakers and contents again.

When lead nitrate solution and potassium chromate solution are mixed, a reaction takes place.

This is the equation for the reaction:

$$Pb(NO_3)_2(aq) + K_2CrO_4(aq) \rightarrow PbCrO_4(s) + 2KNO_3(aq)$$

(a) What would the student see when the reaction takes place?

(b) The table shows the student's results.

|                                            | Mass in g |
|--------------------------------------------|-----------|
| Beaker A and contents before mixing        | 128.71    |
| Beaker <b>B</b> and contents before mixing | 128.97    |
| Beaker A and contents after mixing         | 154.10    |
| Beaker <b>B</b> after mixing               | 103.58    |

| What is the able?                                        | resolution of the balance used to obtain the results in the                                  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Tick ( <b>√</b> ) <b>on</b>                              | <b>e</b> box.                                                                                |
| 0.01 g                                                   | 0.1 g 1 g 100 g                                                                              |
| Calculate th                                             | ne relative formula mass (M <sub>r</sub> ) of lead nitrate Pb(NO <sub>3</sub> ) <sub>2</sub> |
| Relative ato                                             | omic masses (A <sub>r</sub> ): N = 14 O = 16 Pb = 207                                        |
|                                                          |                                                                                              |
| <del></del>                                              |                                                                                              |
|                                                          |                                                                                              |
|                                                          |                                                                                              |
|                                                          |                                                                                              |
|                                                          | Relative formula mass =                                                                      |
|                                                          | Relative formula mass =                                                                      |
| The formula                                              | Relative formula mass =a of potassium chromate is K <sub>2</sub> CrO <sub>4</sub>            |
|                                                          |                                                                                              |
| The charge                                               | a of potassium chromate is K <sub>2</sub> CrO <sub>4</sub>                                   |
| The charge<br>What is the                                | on the potassium ion is +1 formula of the chromate ion?                                      |
| The charge<br>What is the<br>Tick ( <b>√</b> ) <b>on</b> | on the potassium ion is +1 formula of the chromate ion?                                      |
| The charge<br>What is the                                | on the potassium ion is +1 formula of the chromate ion?                                      |
| The charge<br>What is the<br>Tick ( <b>√</b> ) <b>on</b> | on the potassium ion is +1 formula of the chromate ion?                                      |

|     | CrO <sub>4</sub> <sup>2-</sup>                                                                         | (1) |
|-----|--------------------------------------------------------------------------------------------------------|-----|
| (f) | Another student also tests the law of conservation of mass using the same method.                      | (1) |
|     | The student uses a different reaction.                                                                 |     |
|     | This is the equation for the reaction.                                                                 |     |
|     | $Na_2CO_3(aq) + 2HCI(aq) \rightarrow 2NaCI(aq) + CO_2(g) + H_2O(I)$                                    |     |
|     | Explain why this student's results would <b>not</b> appear to support the law of conservation of mass. |     |
|     |                                                                                                        |     |
|     |                                                                                                        |     |
|     |                                                                                                        |     |
|     | (Total 10 m                                                                                            | (3) |

# Q13.

This question is about hydrocarbons.

The table gives information about four hydrocarbons.

The hydrocarbons are four successive members of a homologous series.

| Hydrocarbon | Formula                        | Boiling point in °C |
|-------------|--------------------------------|---------------------|
| Α           | C <sub>4</sub> H <sub>10</sub> | 0                   |
| В           |                                | 36                  |
| С           | C <sub>6</sub> H <sub>14</sub> | 69                  |
| D           | C <sub>7</sub> H <sub>16</sub> | 98                  |

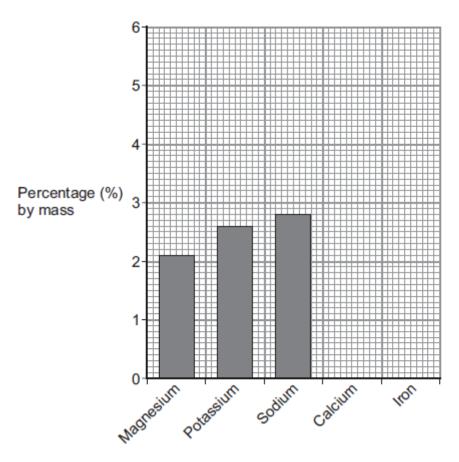
(a) What is the formula of hydrocarbon **B**?

Tick (**√**) **one** box.

|     | C <sub>4</sub> H <sub>12</sub>                                                                 |     |
|-----|------------------------------------------------------------------------------------------------|-----|
|     | C <sub>5</sub> H <sub>12</sub>                                                                 |     |
|     | C <sub>5</sub> H <sub>12</sub>                                                                 |     |
|     | C <sub>6</sub> H <sub>12</sub>                                                                 |     |
|     |                                                                                                | (1) |
| (b) | What is the simplest ratio of carbon : hydrogen atoms in a molecule of hydrocarbon ${\bf A}$ ? |     |
|     | Ratio = 2 :                                                                                    | (1) |
| (c) | Which hydrocarbon is a gas at room tomporature (25 °C)?                                        | (., |
| (c) | Which hydrocarbon is a gas at room temperature (25 °C)?                                        |     |
|     | Tick (✓) one box.                                                                              |     |
|     | A B C D                                                                                        | (1) |
| (d) | Which hydrocarbon is most flammable?                                                           | , , |
|     | Tick ( <b>√</b> ) <b>one</b> box.                                                              |     |
|     | A B C D                                                                                        | (1) |
| (e) | Which <b>two</b> substances are produced when a hydrocarbon <b>completely</b> combusts in air? | ( ) |
|     | Tick (✓) <b>two</b> boxes.                                                                     |     |
|     | Carbon                                                                                         |     |
|     | Carbon dioxide                                                                                 |     |
|     | Hydrogen                                                                                       |     |
|     | Sulfur dioxide                                                                                 |     |

| diag     | am shows the displayed structure of a hydrocarbon molecule.                         |
|----------|-------------------------------------------------------------------------------------|
|          | H H H<br>H - C - C - H<br>H H H                                                     |
| WI       | at is the name of the hydrocarbon in the diagram above?                             |
| Tic      | ( <b>√</b> ) <b>one</b> box.                                                        |
| Ві       | ane                                                                                 |
| Et       | ane                                                                                 |
| М        | thane                                                                               |
| Pı       | pane                                                                                |
|          |                                                                                     |
| Ca<br>ab | culate the relative formula mass $(M_{ m r})$ of the hydrocarbon in the diagram ve. |
| Re       | ative atomic masses ( $A_r$ ): $H = 1$ $C = 12$                                     |
|          | Relative formula mass (M <sub>r</sub> ) =                                           |
|          |                                                                                     |
|          | (Total 9 ma                                                                         |

# Q14


Why is copper used in the manufacture of computers? (a)

Tick (**√**) **one** box.

| Because it has a high density.                 |     |
|------------------------------------------------|-----|
| Because it does not react with water.          |     |
| Because it is a good conductor of electricity. |     |
|                                                | (1) |

(b) **Figure 1** shows the percentage (%) by mass of some metals in the Earth's crust.

Figure 1



(i) What is the percentage by mass of magnesium in the Earth's crust?

\_\_\_\_\_%

(2)

(ii) On **Figure 1** draw the bars for:

- calcium at 3.6% by mass
- iron at 5.0% by mass.

(c) An ore of zinc contains zinc carbonate.

| The   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | action when zinc carbonate is heated is:          |              |  |  |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------|--|--|
| ziı   | ZnCO <sub>3</sub> –<br>nc carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | → ZnO + CO <sub>2</sub> zinc oxide carbon dioxide |              |  |  |
| (i)   | What is the name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of this type of reaction?                         |              |  |  |
|       | Tick ( <b>√</b> ) <b>one</b> box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |              |  |  |
|       | corrosion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |              |  |  |
|       | decomposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                   |              |  |  |
|       | electrolysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   | (1)          |  |  |
| (ii)  | Which substance of occupance of the control of the control occurs oc | in the equation is a gas at room temperature (20  | (1)          |  |  |
|       | Tick ( <b>√</b> ) <b>one</b> box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |              |  |  |
|       | zinc carbonate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   |              |  |  |
|       | zinc oxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                   |              |  |  |
|       | carbon dioxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                   | (1           |  |  |
| (iii) | Complete the table below to show the number of atoms of carbon and oxygen in the formula of zinc carbonate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |              |  |  |
|       | Element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of atoms in the formula ZnCO <sub>3</sub>  |              |  |  |
|       | zinc, Zn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                 |              |  |  |
|       | carbon, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |              |  |  |
|       | oxygen, O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |              |  |  |
| (iv)  | When 125 a zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | carbonate is heated, 81 g zinc oxide is produced  | (2           |  |  |
| ` /   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | es of carbon dioxide produced.                    |              |  |  |
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mass of carbon dioxide =                          | <br>g<br>(1) |  |  |

(d) **Figure 2** shows a simple life cycle of a car body.

Quarry iron ore Extract iron in a blast furnace Convert iron into steel

Make a car body

Recycle the steel

Use the car

(i) What is **one** reason why iron from the blast furnace is converted into steel?

| Tick (✓) one box. (separate only) |  |
|-----------------------------------|--|
| To make the iron pure.            |  |
| To make the iron more brittle.    |  |
| To make alloys for specific uses. |  |

(ii) Apart from cost, give **three different** reasons why steel should be recycled.

| ,  |      |      |  |
|----|------|------|--|
| 1  |      |      |  |
|    |      |      |  |
|    | <br> | <br> |  |
| 2  |      |      |  |
|    |      |      |  |
|    |      |      |  |
| .7 |      |      |  |

(1)

(Total 13 marks)

## Q15.

Metals are extracted from ores in the Earth's crust.

Some ores contain metal carbonates and some ores contain metal oxides.

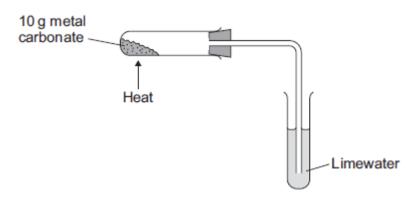
- (a) (i) Name the type of reaction that happens when a metal carbonate is heated.

  (ii) Which solid product is formed when copper carbonate is heated?
  - Tick (✓) one box.

    copper

    copper nitrate

    copper oxide


    copper sulfide

(1)

(b) A student investigated heating four metal carbonates.

Figure 1 shows the apparatus used.

Figure 1

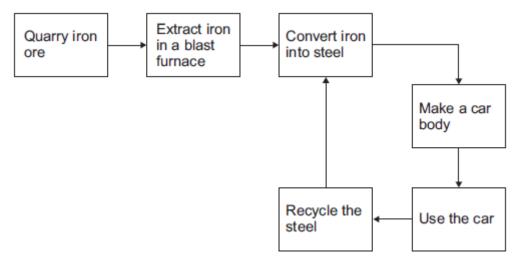


The student heated each metal carbonate for five minutes.

The table below shows the results.

|                 |                                           | -            |
|-----------------|-------------------------------------------|--------------|
| Metal carbonate | Mass of solid after heating for 5 minutes | Observations |

|                     | start in g | in g |                                      |
|---------------------|------------|------|--------------------------------------|
| Copper carbonate    | 10.0       | 6.9  | Limewater<br>turns cloudy            |
| Magnesium carbonate | 10.0       | 9.1  | Limewater<br>turns cloudy            |
| Potassium carbonate | 10.0       | 10.0 | Limewater<br>does not turn<br>cloudy |
| Zinc carbonate      | 10.0       | 8.3  | Limewater turns cloudy               |


| how the reactivity series can be used to predict which metal e reacts most easily when heated. |
|------------------------------------------------------------------------------------------------|
|                                                                                                |
|                                                                                                |
|                                                                                                |
|                                                                                                |

(c) Figure 2 shows a simple life cycle of a car body.

Figure 2

(2)

(2)



(i) Complete the sentence.

Iron ores must contain enough iron to \_\_\_\_\_

(ii) Some iron ores contain iron oxide (Fe<sub>2</sub>O<sub>3</sub>). (1)

Complete and balance the equation for a reaction to produce iron from iron oxide.

$$\frac{}{\mathsf{CO}_2}\mathsf{Fe}_2\mathsf{O}_3 \quad + \quad \underline{\qquad} \mathsf{C} \quad \longrightarrow \quad \underline{\qquad} \quad + \quad \underline{\qquad}$$

(iii) Give **two** reasons why iron produced in a blast furnace is converted into steel. **(separate only)** 

(iv) When a car reaches the end of its useful life, the car body can be:

- recycled
- reused
- sent to landfill.

Give three reasons why a steel car body should be recycled and not

| eused or sent to landfill. |                  |
|----------------------------|------------------|
|                            |                  |
|                            |                  |
|                            |                  |
|                            |                  |
|                            |                  |
|                            |                  |
|                            |                  |
|                            | (3)              |
|                            | (Total 15 marks) |