Questions are for both separate science and combined science students unless indicated in the question

Q1.

This question is about carbon and its compounds.

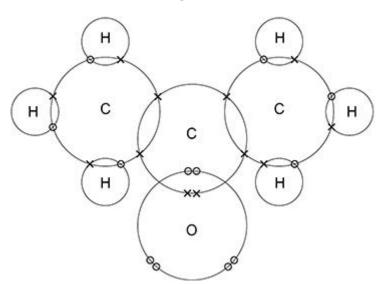
Fullerenes are molecules of carbon atoms.

The first fullerene to be discovered was Buckminsterfullerene (C₆₀).

(a) What shape is a Buckminsterfullerene molecule?

(1)

(b) Give **one** use of a fullerene.



(1)

Propanone is a compound of carbon, hydrogen and oxygen.

Figure 1 shows the dot and cross for a propanone molecule.

Figure 1

(c) Complete **Figure 2** to show a propanone molecule.

Use a line to represent each single bond.

Use Figure 1.

Figure 2

(1)

(d) Determine the molecular formula of propanone.

Use Figure 1.

Molecular formula = _	
	(1)

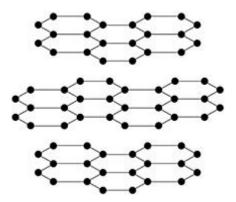
(e) Propanone is a liquid with a low boiling point.

Why does propanone have a low boiling point?

Tick (✓) one box.

The covalent bonds are strong.

The covalent bonds are weak.


The intermolecular forces are strong.

The intermolecular forces are weak.

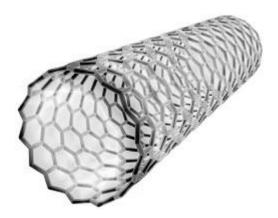
(1)

(f) Figure 3 represents the structure of graphite.

Figure 3

Explain why graphite is:

- a good electrical conductor
- soft and slippery.


<u></u>
) Il 11 mark

Q2.

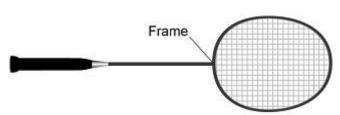
This question is about materials and their properties.

(a) **Figure 1** shows a carbon nanotube.

Figure 1

The structure and bonding in a carbon nanotube are similar to graphene.

Carbon nanotubes are used in electronics because they conduct electricity.


Explain why carbon nanotubes conduct electricity.

(2)

(b) Figure 2 shows a badminton racket.

Figure 2

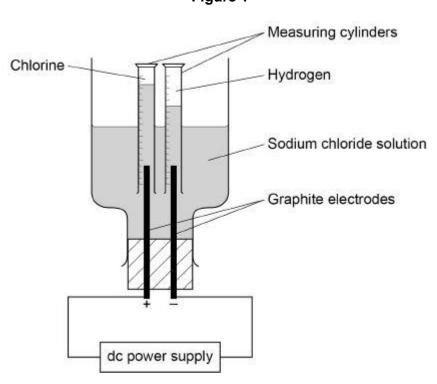
The following table shows some properties of materials.

The materials could be used to make badminton racket frames.

Material	Density in g/cm³	Relative strength	Relative stiffness
Aluminium	2.7	0.3	69
Carbon nanotube	1.5	60	1000
Wood	0.71	0.1	10

Evaluate the use of the materials to make badminton racket frames.

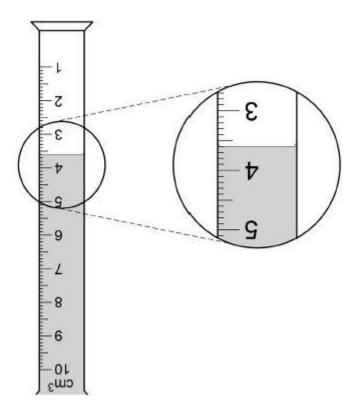
Use the table above.	


nc	oxide can be produced as nanoparticles and as fine particles.
	A nanoparticle of zinc oxide is a cube of side 82 nm
	Figure 3 represents a nanoparticle of zinc oxide.
	Figure 3
	Calculate the surface area of a nanoparticle of zinc oxide. Civo your appears in standard form. (separate only)
	Give your answer in standard form. (separate only)
	Surface area = nm ²
	Some suncreams contain zinc oxide as nanoparticles or as fine particles.
	Suggest one reason why it costs less to use nanoparticles rather than fine particles in suncreams. (separate only)

Q3.

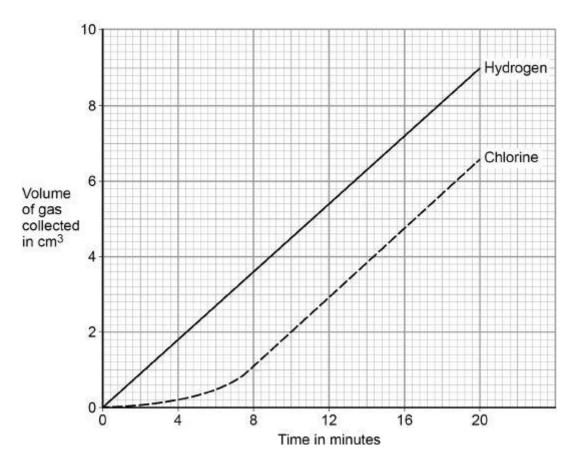
A student investigated the electrolysis of sodium chloride solution.

Figure 1 shows the apparatus.


Figure 1

The student measured the volume of gas collected in each measuring cylinder every minute for 20 minutes.

(a) **Figure 2** shows the volume of hydrogen gas collected in the measuring cylinder after 8 minutes.


Figure 2

What is the volume of hydrogen gas collected?

Figure 3 shows the results of the investigation.

Figure 3

(b) Which of the lines on **Figure 3** show that the volume of gas collected is directly proportional to the time?

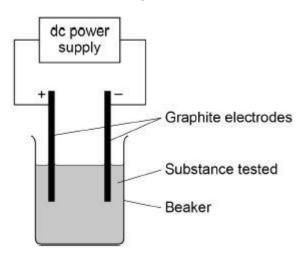
Tick one box.

Both lines	0 0
Chlorine line only	
Hydrogen line only	
Neither line	

(1)

(c) Which of the lines on **Figure 3** show a positive correlation between the volume of gas collected and time?

Tick one box.


Both lines

Chlorine line only	
Hydrogen line only	
Neither line	
	(1)

A teacher demonstrates the electrolysis of different substances using graphite electrodes.

Figure 4 shows the apparatus used.

Figure 4

(d) Why can graphite conduct electricity?

Tick one box.

Graphite exists in layers of atoms.	
Graphite has a giant structure.	
Graphite has a high melting point.	
Graphite has delocalised electrons.	

(1)

- (e) The teacher demonstrates the electrolysis of:
 - molten zinc chloride
 - potassium bromide solution.

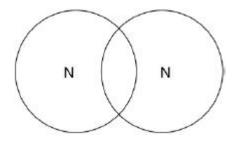
Complete the table below to predict the products.

Choose answers from the box.

chlorine bromin	hydrogen	oxygen	potassium	zinc
-----------------	----------	--------	-----------	------

Substance electrolysed	Product at cathode (negative electrode)	Product at anode (positive electrode)
Molten zinc chloride		
Potassium bromide solution		

(4)


(Total 8 marks)

Q4.

This question is about structure and bonding.

(a) Complete the dot and cross diagram to show the covalent bonding in a nitrogen molecule, $N_{\rm 2}$

Show only the electrons in the outer shell.

(2)

(b) Explain why nitrogen is a gas at room temperature.

Answer in terms of nitrogen's structure.

(3)

Graphite is soft and is a good conductor of electricity.
Explain why graphite has these properties.
Answer in terms of structure and bonding.
Figure 1 shows a model of a Buckminsterfullerene molecule. Figure 1
Figure 1 A lubricant is a substance that allows materials to move over each other

		(2)
Silve	er can form cubic nanocrystals.	
Figu	ure 2 represents a silver nanocrystal.	
	Figure 2	
(e)	A silver nanocrystal is a cube of side 20 nm	
	Calculate the surface area to volume ratio of the nanocrystal. (separate only	y)
	Surface area to volume ratio =	(3)
(f)	Silver nanoparticles are sometimes used in socks to prevent foot odour.	
	Suggest why it is cheaper to use nanoparticles of silver rather than coarse particles of silver. (separate only)	
		(2)
	(Total 16 m	

Q5.

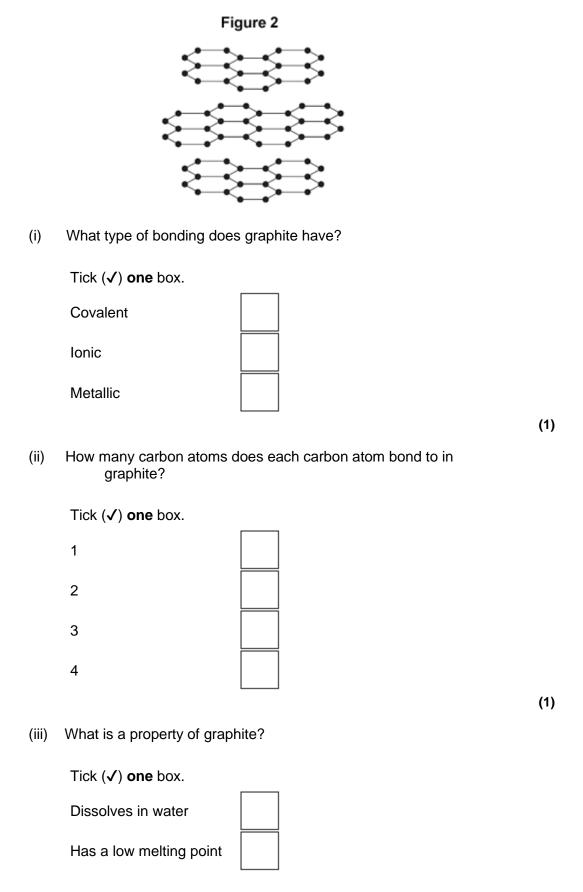
This question is about different substances and their structures.

(a) Draw **one** line from each statement to the diagram which shows the structure.

Statement	Structure
	4 4
The substance is a gas	•
The substance is a liquid	
The substance is ionic	0000 0000 00000
The substance is a solid metal	909000
	(4)
(b) Figure 1 shows the structure of an element.	
Figure 1	
	•
	:
	•
What is the name of this element?	
Tick one box.	
Carbon	
Chloride	

Nitrogen Xenon			44
Why does this element of	conduct electricity	v?	(1
Tick one box.			
It has delocalised electr	rons		
It contains hexagonal ri	ngs		
It has weak forces betw	een the layers		
It has ionic bonds			
			(1
Figure 2 shows the stru	cture of an alloy. Figure 2		
Explain why this alloy is		Metal X ral Y oure metal Y.	
			(2
What percentage of the	atoms in the alloy	ys are atoms of X ?	
			(2)

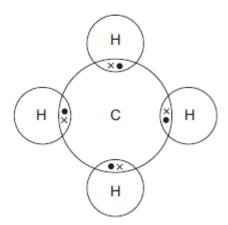
(f)	Wha	t type of substance is an alloy?	
	Ticl	k one box.	
	Cor	mpound	
	Ele	ment	
	Mix	ture	
		((1) Total 11 marks)
Q6.			
Thi	is ques	tion is about substances containing carbon atoms.	
(a)	Diar	mond is made of carbon atoms.	
	(i)	Diamond is used for tips of drills.	
		Figure 1 shows a drill.	
		Figure 1	
		© Kershawj/iStock	
		Give one reason why diamond is used for tips of drills.	
			(1)
	(ii)	Diamond nanoparticles can be made.	(1)
	(")	Use the correct answer from the box to complete the sentence	ce.


 hundred
 million
 thousand

 Nanoparticles contain a few ______ atoms.

(1)

(b) Graphite is made of carbon atoms.


Figure 2 shows the structure of graphite.

		Soft and slippery			(1)		
(c)	Poly	(ethene) is made of c	carbon and hydroge	en atoms.	()		
()	-	(ethene) is a thermos					
	•	re 3 shows the struc		tening polymer.			
			Figure 3				
		2000 2000 2000 -0	20000000000000000000000000000000000000	200° 200 200 200 200 200 200			
	(i)	Complete the sente	nce. (separate on	ly)			
		Between the polym	er chains in a thern	nosoftening polymer there			
		are no	·		(1)		
	(ii)	Use the correct ans	wer from the box to	complete the sentence. (
		condense	dissolve	melt			
		Heating would caus	se a thermosoftenin	g polymer to			
			·		(1)		
	(iii)	Many ethene molec	ules react together	to make poly(ethene).			
		Different types of poly(ethene) can be made by changing the conditions for the reaction. Suggest two conditions that could be changed. (separate only)					
		1.					
		2.					
					(2)		

(d) **Figure 4** shows how the atoms are bonded in methane.

Figure 4

(i) What is the formula for methane?

Tick (✓)	one	box
----------	-----	-----

C ₄ H	
CH ₄	
C ₄ H ₄	

(1)

(ii) Methane has a low boiling point.

What does methane consist of?

Tick (**√**) **one** box.

Charged ions

A giant lattice

Small molecules

		(1)
(Total	11	marks)

Q7.

This question is about the properties and uses of materials.

Use your knowledge of structure and bonding to answer the questions.

(a) Explain how copper conducts electricity.

Ph	vsicsAr	าฝไปล	thsT	iitor	con
ΓII	voicomi	iuivia	เมอา	ului.	COH

AQA Chemistry GCSE	Structure and Bonding of Carbon	hysicsAndMathsTt
		(2)
(b)	Explain why diamond is hard.	
(c)	Explain why thermosetting polymers are better than thermosofte	(2) ening
()	Explain why thermosetting polymers are better than thermosofte polymers for saucepan handles. (separate only)	3

(2) (Total 6 marks)