
All questions are for separate science students only

Q1.

This question is about substances used to make windows and window frames.

Figure 1 shows a window.

Figure 1

(a) Glass is made by heating sand with **two** other materials.

Which two other materials are used to make glass?

Tick (✓) **two** boxes.

Clay	3 9
Graphite	3 6
Limestone	3 1
Sodium carbonate	3 3
Sodium hydroxide	

(2)

Window frames need to be:

- easy to install
- resistant to damage.

The polymers poly(chloroethene) and HDPE are used to make window frames.

Table 1 shows information about poly(chloroethene) and HDPE.

Table 1

Property	Poly(chloroethene)	HDPE
Density in g/cm³	1.4	0.92
Relative strength	72	25

(b)	Suggest one advantage of using poly(chloroethene) compared with HDPE
	to make window frames.

Give **one** reason for your answer.

Use Table	U	lse	Ta	b	le	1
------------------	---	-----	----	---	----	---

Advantag	e		
Reason _			

(2)

(c) Suggest **one** advantage of using HDPE compared with poly(chloroethene) to make window frames.

Give one reason for your answer.

Use Table 1.

Advantage _____

Reason _____

(2)

(d) **Figure 2** shows the displayed structural formula of poly(chloroethene).

Figure 2

$$\begin{pmatrix} H & Cl \\ -C & -C \\ -1 & -1 \\ H & H \end{pmatrix}_{r}$$

Which monomer is used to make poly(chloroethene)?

Tick (\checkmark) one box.

	C=C
	H H
	H Cl
	c=c
	н н
	Cl Cl
	$\dot{c} = \dot{c}$
	CL H
	ÇI ÇI
	c=c
	CI CI
Ch	lorine gas is used to produce poly(chloroethene).
De	scribe a test to identify chlorine gas.
	ve the result of the test.
ı e	st
Re	sult
Wc	ood can be used instead of polymers to make window frames.
•	Polymers are unreactive.
•	Polymers are produced from crude oil.
•	Wood breaks down in wet conditions.
•	Wood is produced from trees.
	ggest one advantage of using polymers and one advantage of using
	od to make window frames.

s በበ k/		nade from an alloy of a sed to make a window	
		s of each element in 6	
Tubic	Tab		noo ng or the diloy.
Eleme		Mass in kg	
Alumi	nium	5.94	
Magn	esium	0.04	
Silicon	1	0.02	
Calcul	ate the percentag	e of aluminium in 6.00	D kg of the alloy.
Why is	an alloy used ins		m to make window frames?

Q2.

This question is about poly(ethene) and polyesters.

(a) Poly(ethene) is produced from ethene.

Figure 1 shows part of the displayed structural formula equation for the reaction.

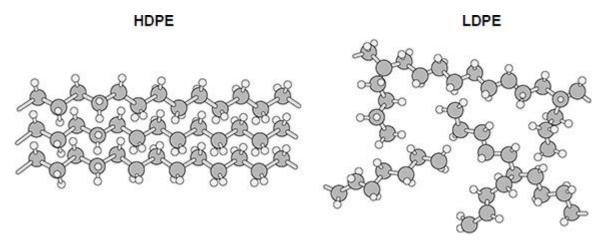
Complete Figure 1.

Figure 1

(2)

(b) Poly(ethene) is a thermosoftening polymer.

(c) Ethene produces different forms of poly(ethene).


How can different forms of poly(ethene) be produced from ethene?

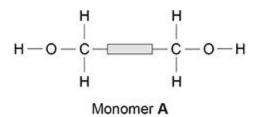
(1)

- (d) Two different forms of poly(ethene) are:
 - high density poly(ethene) (HDPE)
 - low density poly(ethene) (LDPE).

Figure 2 represents part of the structures of HDPE and LDPE.

Figure 2

Explain why HDPE has a higher density than LDPE.


(2)

(1)

Figure 3 shows three monomers, A, B and C.

Monomer ${\bf A}$ can react with monomer ${\bf B}$ and with monomer ${\bf C}$ to produce polyesters.

Figure 3

- (e) Draw a circle on **Figure 3** around an alcohol functional group.
- (f) Complete the table below to show the formula of the small molecule
- produced when:
 - monomer A reacts with monomer B
 - monomer A reacts with monomer C.

Reacting monomers	Formula of small molecule produced
A and B	
A and C	

(1) (Total 9 marks)

Q3.

This question is about copper and alloys of copper.

Solders are alloys used to join metals together.

Some solders contain copper.

The table below shows information about three solders, **A**, **B** and **C**.

Solder	Melting point in °C	Metals in solder
Α	183	tin, copper, lead
В	228	tin, copper, silver
С	217	tin, copper, silver

			, соррог, сс.	
	С	217	tin, copper, silver	
		B and solder C are reasons.	e now used more frequ	ently than solder A for
	Sugge	st one reason why.		
	Use the	e table above.		
	Sugge	st one reason why	solders B and C have	different melting points.
	Use th	e table above.		
or	er can	be obtained by:		
γ		sing copper ores		
	•	ng scrap copper.		
			hy recycling scrap cop han processing coppe	per is a more sustainable r ores.
	1			
	2			
	-			
	3			
	3			

(d)	Describe how copper is extracted from low-grade ores by phytomining.	
(e)	Phytomining has not been widely used to extract copper.	
	Suggest two reasons why.	
	1	
	2	
	(Total 11 m	na
1.		
	question is about alloys.	
Bron	nze and brass are both alloys which contain copper.	
(a)	Bronze is an alloy of copper and one other metal.	
	What is the other metal in bronze?	
	Tick (✓) one box.	
	Aluminium	
	Tin	

Give one use of	brass.			
s of gold are use	d to make jewe	llery.		
-	•	by is measured in	n carats:	
	is 24 carat	,		
• 50% gold	is 12 carat.			
The table below	shows informa	ition about two g	old rings, A and B .	
A and B contain	only gold and	silver.		
Complete below	the table below	W.		
Coldwing	Carat	Mass of me	tal in grams	
Gold ring	Carat	gold	silver	
Α		7	7	
	18	9		
Α	18		7	
Suggest two reamake jewellery.	asons why alloy	s of gold are use	ed instead of pure go	old to
Suggest two reamake jewellery.		s of gold are use		old to
Suggest two reamake jewellery.				old to
Suggest two reamake jewellery.				
Suggest two reamake jewellery.				
Suggest two reamake jewellery.				
Suggest two reamake jewellery.				
Suggest two reamake jewellery. 1	on.			
Suggest two reamake jewellery. 1 2 s are alloys of iron	on.			

must not wear away quickly.

	Suggest one reason why stainless steel is suitable for making spo	ons.
		(
(f)	Steel horseshoes are shaped to fit the feet of horses.	,
	Which type of steel is most easily shaped into horseshoes?	
	Tick (✓) one box.	
	High carbon steel	
	Low carbon steel	
	Stainless steel	
		(Total 8 mark
5. This	question is about materials used to make plates.	
	es are made from ceramics, paper or poly(propene).	
(a)	Paper plates are biodegradable and recyclable.	
	Which stage of a life cycle assessment (LCA) would contain this information?	
	Tick (✓) one box.	
	Disposal at the end of useful life	
	Extracting and processing raw materials	
	Manufacturing and packaging	
	Use and operation during lifetime	
		(
(b)	Which two processes are used to make ceramic plates?	`

	Tick (✓) two boxes.		
	Forming a composite		
	Galvanising with zinc		
	Heating in a furnace		
	Melting sand and boron	trioxide	
	Shaping wet clay		
			(2)
Poly	(propene) is produced fron	n an alkene.	
(c)	Complete the sentences.		
()	•	molecules such as poly(propene) is	
		noiceales each as poly(propone) is	
	The name of the alkene	used to produce poly(propene) is	
	·		(2)
(d)	The alkene needed to ma	ake poly(propene) is produced from crude	
()		e used to produce this alkene from crude of	
	Tick (√) two boxes.		
	TICK (V) TWO DOXES.		
	Chromatography		
	Cracking		
	Fermentation		
	Fractional distillation		
	Quarrying		
			(2)

Page 11 of 35

(e) What type of bond joins the atoms in a molecule of poly(propene)?

	Tick (√) o	ne box.		
	Covalent			
	Ionic			
	Metallic			
				1)
The	table below	shows information about two p	polymers used to make plates.	
F	Polymer	Effect of heating the polymer		
	Α	does not melt		
	В	melts at 50 °C		
(f)	What type	of polymer is polymer A ?		
	Use the ta	able above.		
			(1)
(g)	Why does	polymer A behave differently t	o polymer B when heated?	
	You shoul	d refer to crosslinks in your ans	swer.	
) (Total 10 mark	1) s)
			(10tal 10 mark	~,

Q6.

This question is about materials used to make food plates.

Food plates are made from paper, polymers or ceramics.

The table below shows information about plates of the same diameter made from each of these materials.

Fo	od plate mater	ial
Paper	Polymers	Ceramics

Raw material	Wood	Crude oil	Mined clay
Number packaged in 10 dm³ cardboard box	500	100	50
Average number of times used	1	400	1000
Biodegradable?	Yes	No	No
Recyclable?	Yes	Yes	No

time	s used				
Biod	legradable?	Yes	No	No	
Rec	yclable?	Yes	Yes	No	
(a)	The table above do Suggest two pieces produce a complete materials.	s of information e life cycle asses	about energy us ssment (LCA) fo	sage which woul	
	2				
(b)	Evaluate the use of You should use feature the table above	tures of life cycl	_	•	

		(4)
(c)	Describe how ceramic food plates are produced from clay.	
,		
		_
		_
		_
		- (2)
	(Total S	(<i>2)</i> R marke)

Q7.

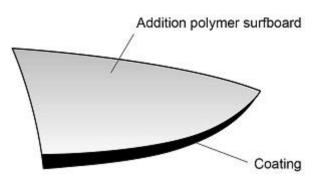
Figure 1 shows a surfer on a surfboard.

Figure 1

Some surfboards are made from addition polymers.

Ionic

Addition polymers are made from small alkene molecules.


(a) Which type of bonding is present in small alkene molecules?Tick (✓) one box.Covalent

	Metallic		(1)
(b)	What is the fun	ctional group in these small alkene molecules?	(.,
	Tick (✓) one be	ox.	
	-c = c -		
	—соон		
	—ОН		
			(1)

Figure 2 shows the structure of part of an addition polymer surfboard.

The outer surface of the surfboard is coated.

Figure 2

The coating is made from soda-lime glass fibres surrounded by a plastic.

(c) What type of material is the coating of the surfboard?

Tick (✓) one box.

Alloy	
Ceramic	
Composite	

Com	plete the sente	ence.		
Choo	ose answers fr	om the box.		
	air	ammonia	copper	
		limestone	sand	
carb	onate,	to make the soda-lime	glass fibres are sodium	
Sugg	onate, gest two reaso	ar ns why surfboards are c	d	
Sugg	gest two reaso	arns why surfboards are c	doated.	
Sugg	gest two reaso	arns why surfboards are c	doated.	

Т polymer surfboard and a wooden surfboard.

	Addition polymer surfboard	Wooden surfboard
Relative strength	14	38
Cost (£ per m³)	140	390
Density (kg/m³)	50	150
Disposal at end of life	Difficult to recycle	Can be used as fuel

(f)	Suggest two advantages and two disadvantages of using addition
	polymers rather than wood to make surfboards.

Use the table.

Advantages of addition polymers ____

Disadvantages	s of addition polymers	
Calculate the v	volume of wood in a wooden surfboard of mass 5.25	kg
Use the table a	above and the equation:	
	Density in kg/m ³ = $\frac{\text{Mass in kg}}{\text{Volume in m}^3}$	
	Volume =	m 3

Q8.

This question is about the corrosion of metals.

The corrosion of iron is called rusting.

(a) Plan an investigation to show that both water and air are needed for iron to rust.

You should include the results you expect to obtain.

Use apparatus and materials from the list:

- test tubes
- stoppers
- iron nails
- tap water
- boiled water
- drying agent
- oil.

(6)

A student investigated how the mass of three iron nails, ${\bf A},\,{\bf B}$ and ${\bf C},$ increased after rusting.

The table shows the student's results.

Nail	Mass of nail before rusting in g	Mass of nail after rusting in g	Increase in mass of nail in g
Α	1.22	1.30	0.08
В	1.25	1.36	х
С	1.24	1.33	0.09

X =	g
Calculate the mean increase in mass of the three iron nails, A , B and C .	
Use the table above and your answer to part (b).	

Q9.

Figure 1 shows a surfer on a surfboard.

Figure 1

Surfboards are made from polymers.

Surfboards have a poly(styrene) core and an outer skin.

(a) **Figure 2** shows the displayed structural formula of poly(styrene).

Figure 2

$$\begin{pmatrix}
C_{6}H_{5} & H \\
C & C \\
H & H
\end{pmatrix}$$

Figure 3 shows an incomplete displayed structural formula of the monomer styrene.

Complete Figure 3.

Figure 3

(2)

The outer skin of surfboards contains a polyester.

Two monomers, **A** and **B**, are needed to make the polyester.

Figure 4 shows how these two monomers are represented.

Figure 4 HO — OH HOOC — COOH Monomer A Monomer B (b) Name the functional group in monomer B. (1) (c) Monomers A and B join together to produce a polyester and a small molecule. Name the small molecule. (1) (d) Why does this type of polyester melt when it is heated?

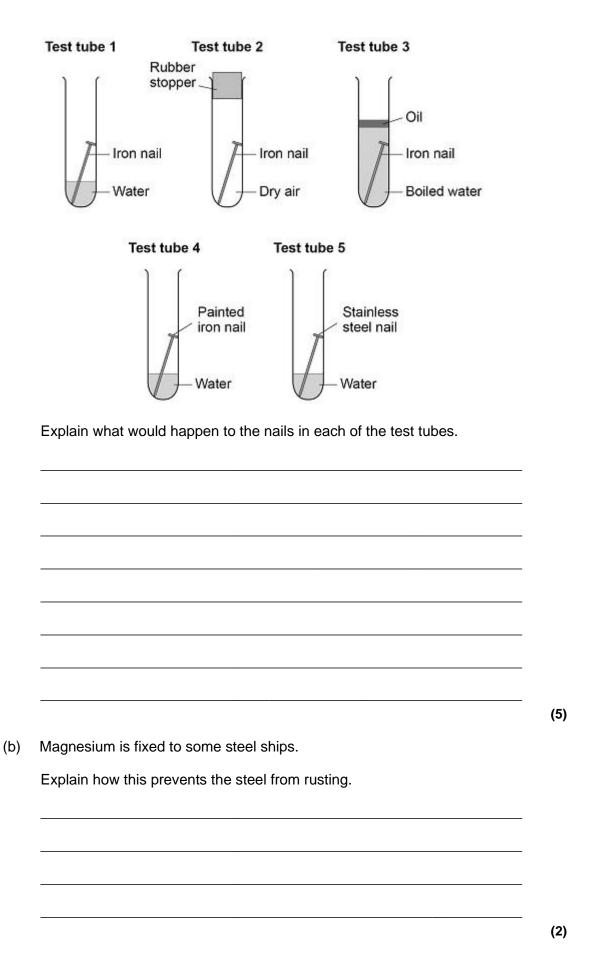
The outer skin of surfboards is a composite material.

The composite material contains glass fibres surrounded by a polyester.

(e) Draw **one** line from each material to the description of that material.

ption of the material
Hydrocarbon
Matrix
Monomer
Polypeptide
Reinforcement
he poly(styrene) core.
_

Q10.


This question is about the corrosion of metals.

The corrosion of iron is called rusting.

(a) A student investigated the rusting of iron.

This is the method used.

- 1. Set up the test tubes as shown in the figure below.
- 2. Leave the test tubes for 1 week.
- 3. Examine the nails for signs of rust.

·		

Q11.

Polymers are used to make fabrics.

Table 1 shows some properties of two polymers.

Table 1

Property	Polymer J	Polymer K
Density in g/cm³	0.9	1.4
Melting point in °C	165	260
Flame resistance	Poor	Good
Water absorption	Low	High

(a) Polymer fabrics are used to make firefighter uniforms.

Complete **Table 2** by deciding for each property whether polymer J or polymer K is best for firefighter uniforms.

Use Table 1.

Density has been completed for you.

Tick three boxes.

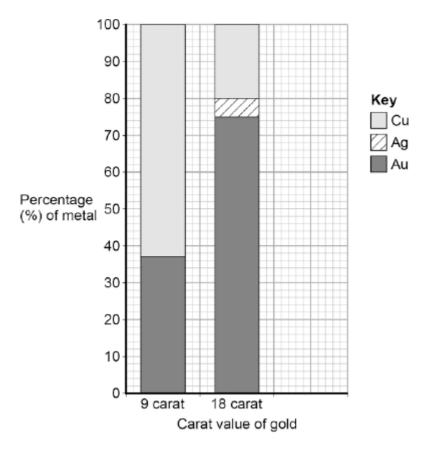
Table 2

Property	Polymer J	Polymer K
Density in g/cm ³	✓	
Melting point in °C		
Flame resistance		
Water absorption		

(2)

(b) A firefighter uniform made from polymer **J** has a mass of 6.0 kg

	Calculate the mass of a uniform of the same size made from polymer K .	
	Use Table 1 and the equation:	
	mass of uniform made from polymer $\mathbf{K} = \frac{\text{density of polymer } \mathbf{K}}{\text{density of polymer } \mathbf{J}} \times 6.0$	
	Mass of uniform made from polymer K = k	g (
(c)	Polymers J and K are both thermosoftening polymers.	
	Polymer L is a thermosetting polymer.	
	Why would polymer ${\bf L}$ be better than polymers ${\bf J}$ and ${\bf K}$ for firefighter uniforms?	
	Tick one box.	
	Polymer L burns easily	
	Polymer L does not biodegrade	
	Polymer L will not melt	
		(
Poly	mers J and K are made from crude oil.	
In th	e past, firefighter uniforms were made from wool.	
Woo	I is obtained from sheep.	
(d)	Why are many fabrics made from polymers instead of wool?	
	Tick one box.	
	Polymers are man-made	
	Polymers are more hard-wearing	


	Wool is more easi	ly available				
	Wool is more flam	e resistant			(4)	
(e)	Why is wool more suniforms?	sustainable	than polymers J a	nd K for makir	(1) ng firefighter	
					(2) (Total 8 marks)	
Q12.						
This	question is about al	loys of copp	er.			
(a)	Complete the sent	ence.				
	Choose the answer from the box.					
	aluminium	iron	magnesium	tin		
	Bronze is an alloy	of copper ar	nd		(1	
Bras	s is an alloy of copp	er and zinc.			(1)	
The bras	table shows the peros.	centage by i	mass of copper an	d zinc in two t	ypes of	
		Percenta	age (%) by mass			
	Type of brass	Copper	Zinc			
	Red brass	90	10			
	Yellow brass	х	30			
(b)	Calculate value X i	n the table a	above.	_		
		Percenta	age by mass X = _			

	Mass =	g
What is meant by an alloy?		
Brass contains layers of at	oms which can slide over each c	ther.
Explain why red brass is so	ofter than yellow brass.	
Use the table above and yo	our own knowledge.	
Some musical instruments	are made of brass.	
Parts of these instruments	can be gold plated.	
What is the carat number o	f pure gold?	
What is the carat number c	. •	

Q13.

Gold is mixed with other metals to make jewellery.

The figure below shows the composition of different carat values of gold.

(a) What is the percentage of gold in 12 carat gold?

Tick one box.

12 %	30 %	50 %	80 %			
						(1)

(b) Give the percentage of silver in 18 carat gold.

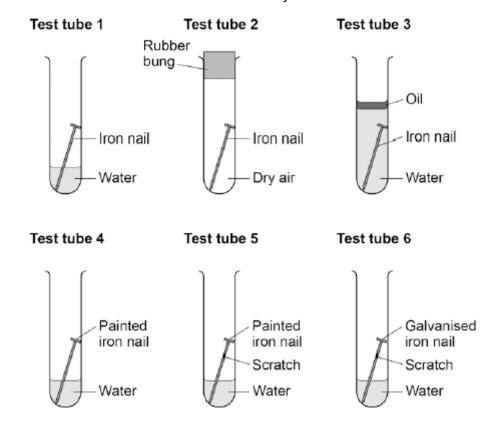
Use the figure above to answer this question.

(c) Suggest **two** reasons why 9 carat gold is often used instead of pure gold to make jewellery.

1. ______

2. _____

(Total 4 marks)


(2)

Q14.

The figure below shows six test tubes a student set up to investigate the rusting of iron.

This is the method used for each test tube.

- 1. Measure the mass of the nail using a balance.
- 2. Leave the nail in the test tube for 6 days.
- 3. Measure the mass of the nail after 6 days.

The table below shows the student's measurements.

Test tube	Mass of nail in g	Mass of nail after 6 days in g
1	8.45	8.91
2	8.46	8.46
3	8.51	8.51
4	9.65	9.65
5	9.37	9.45
6	9.79	9.79

(a) What is the resolution of the balance the student used?

Tick one box.		
1 x 10⁻³ g		
1 × 10 ⁻² g		
1 × 10 ⁻¹ g		
1 × 10 ² g		
	ference in percentage increase in mass after 6 days of t and the nail in test tube 5 .	he
Give your answe	er to three significant figures.	
		_ _ _
D	Difference in percentage increase in mass =	 _ %
D	Difference in percentage increase in mass =	 _ %
Use the results o	Difference in percentage increase in mass = of the student's investigations to draw conclusions about ting the rusting of iron. Include an evaluation of the different coatings at preventing the rusting of iron.	
Use the results o the factors affect	of the student's investigations to draw conclusions about ting the rusting of iron. Include an evaluation of the	
Use the results o the factors affect	of the student's investigations to draw conclusions about ting the rusting of iron. Include an evaluation of the	
Use the results o the factors affect	of the student's investigations to draw conclusions about ting the rusting of iron. Include an evaluation of the	
Use the results o the factors affect	of the student's investigations to draw conclusions about ting the rusting of iron. Include an evaluation of the	
Use the results o the factors affect	of the student's investigations to draw conclusions about ting the rusting of iron. Include an evaluation of the	

(d)

	(6)
Rust is hydrated iron(III) oxide.	, ,
Complete the word equation for the reaction.	
+ + → hydrated iron(III) oxide	

(2) (Total 13 marks)

Q15.

Plastic and glass can be used to make milk bottles.

The figure below shows the percentage of milk bottles made from glass between 1975 and 2010.

(a) Plot the points and draw a line on the figure above to show the percentage of milk bottles made from materials **other** than glass between 1975 and 2010.

(3)

(b) The table below gives information about milk bottles.

Glass milk bottle	Plastic milk bottle
-------------------	---------------------

Raw materials	Sand, limestone, salt	Crude oil
Bottle material	Soda-lime glass	HD poly(ethene)
Initial stage in production of bottle material	Limestone and salt used to produce sodium carbonate.	Production of naphtha fraction.
Maximum temperature in production process	1600 °C	850 °C
Number of times bottle can be used for milk	25	1
Size(s) of bottle	0.5 dm³	0.5 dm³, 1 dm³, 2 dm³, 3 dm³
Percentage (%) of recycled material used in new bottles	50 %	10 %

Evaluate the production and use of bottles made from soda-lime glass and those made from HD poly(ethene).

Use the information given and your knowledge and understanding to justify your choice of material for milk bottles.

(6)

(Total 9 marks)

Q16.

This question is about substances containing carbon atoms.

- (a) Diamond is made of carbon atoms.
 - (i) Diamond is used for tips of drills.

Figure 1 shows a drill.

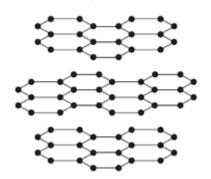
Figure 1

© Kershawj/iStock

Give **one** reason why diamond is used for tips of drills.

(1)

(ii) Diamond nanoparticles can be made.


Use the correct answer from the box to complete the sentence.

nunarea	million	tnousand
Nanoparticles conta	ain a few	atoms.

(b) Graphite is made of carbon atoms.

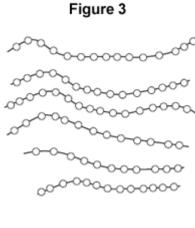

Figure 2 shows the structure of graphite.

Figure 2

(c)

(i)	What type of bonding doe	es graphite have?	
	Tick (√) one box.		
	Covalent		
	Ionic		
	Metallic		
			(1)
(ii)	How many carbon atoms graphite?	does each carbon atom bond to in	
	Tick (√) one box.		
	1		
	2		
	3		
	4		
			(1)
(iii)	What is a property of grap	phite?	
	Tick (√) one box.		
	Dissolves in water		
	Has a low melting point		
	Soft and slippery		
			(1)
Poly	(ethene) is made of carbon	and hydrogen atoms.	
Poly	(ethene) is a thermosoften	ing polymer.	
Figu	re 3 shows the structure o	f a thermosoftening polymer.	

(i)	Complete the sentence.
	Between the polymer chains in a thermosoftening polymer there
	are no
(ii)	Use the correct answer from the box to complete the sentence.

 condense
 dissolve
 melt

 Heating would cause a thermosoftening polymer to

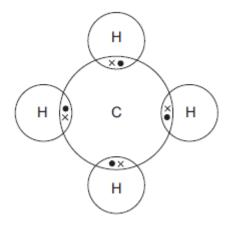
(1)

(1)

(iii) Many ethene molecules react together to make poly(ethene).

Different types of poly(ethene) can be made by changing the conditions for the reaction.

Suggest two conditions that could be changed.


1. _____

2. _____

(2)

(d) **Figure 4** shows how the atoms are bonded in methane.

Figure 4

(i) What is the formula for methane?

lick (✓) one box.	
C ₄ H	
CH ₄	
C ₄ H ₄	

(1)

(ii) Methane has a low boiling point.

What does methane consist of?

Tick (√) one box.	
Charged ions	
A giant lattice	
Small molecules	

(1)

(Total 11 marks)