Questions are for both separate science and combined science students unless indicated in the question

Q1				
	This	question is about materials used to make	plates.	
	Plate	s are made from ceramics, paper or poly	(propene).	
	(a)	Paper plates are biodegradable and recy	/clable.	
		Which stage of a life cycle assessment (information?	LCA) would contain this	
		Tick (✓) one box.		
		Disposal at the end of useful life		
		Extracting and processing raw materials		
		Manufacturing and packaging		
		Use and operation during lifetime		
	(b)	Which two processes are used to make Tick (✓) two boxes. (separate only)	(1 ceramic plates?)
		Forming a composite		
		Galvanising with zinc		
		Heating in a furnace		
		Melting sand and boron trioxide		
		Shaping wet clay		
			(2)
	Poly(propene) is produced from an alkene.		
	(c)	Complete the sentences. (separate on	iy)	

The name for very large molecules such as poly(propene) is

	·		
	The name of the alke	ne used to produce poly(propene) is	
		_	(2)
(d)	The alkene needed to	make poly(propene) is produced from crude oil.	
	Which two processes	s are used to produce this alkene from crude oil?	
	Tick (✓) two boxes.		
	Chromatography		
	Cracking		
	Fermentation		
	Fractional distillation		
	Quarrying		
			(2)
(e)	What type of bond joi	ns the atoms in a molecule of poly(propene)?	
	Tick (✓) one box.		
	Covalent		
	Ionic		
	Metallic		
			(1)

The table below shows information about two polymers used to make plates.

Polymer	Effect of heating the polymer
Α	does not melt
В	melts at 50 °C

(f)	What type of polymer is polymer A?	
	Use the table above. (separate only)	
		(1
(g)	Why does polymer A behave differently to polymer B when heated?	
	You should refer to crosslinks in your answer. (separate only)	
	(Total 10 i	(1 ₎ marks
	(10.00.10.1	iiai ko
. This	question is about materials used to make food plates.	
Food	d plates are made from paper, polymers or ceramics.	

The table below shows information about plates of the same diameter made from each of these materials.

	Fo	od plate mater	ial
	Paper	Polymers	Ceramics
Raw material	Wood	Crude oil	Mined clay
Number packaged in 10 dm³ cardboard box	500	100	50
Average number of times used	1	400	1000
Biodegradable?	Yes	No	No
Recyclable?	Yes	Yes	No

(a) The table above does **not** show information about energy usage.

Suggest **two** pieces of information about energy usage which would help to produce a complete life cycle assessment (LCA) for the three food plate materials.

1 _		
2 _	 	

E١	valuate the use of these materials for making food plates.
Υœ	ou should use features of life cycle assessments (LCAs).
U	se the table above.
	·
D€	escribe how ceramic food plates are produced from clay. (separate only)

Q3.

Figure 1 shows a surfer on a surfboard.

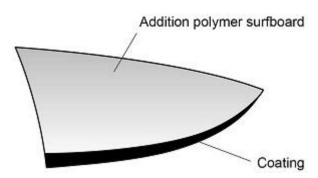
Figure 1

Some surfboards are made from addition polymers.

Addition polymers are made from small alkene molecules.

(a) Which type of bonding is present in small alkene molecules?
Tick (✓) one box.
Covalent
Ionic
Metallic

(1)


(b) What is the functional group in these small alkene molecules?Tick (✓) one box.

(1)

Figure 2 shows the structure of part of an addition polymer surfboard.

The outer surface of the surfboard is coated.

Figure 2

The coating is made from soda-lime glass fibres surrounded by a plastic.

(c)	What type of material is the coating of the surfboard?

Tick (✓) one box.	(separate only)
Alloy	
Ceramic	
Composite	
Nanotube	

(1)

(2)

(d) Complete the sentence.

Choose answers from the box. (separate only)

air	ammonia	copper
	limestone	sand

The materials used to make the soda-lime glass fibres are sodium carbonate,

 and

(e) Suggest two reasons why surfboards are coated. (separate only)

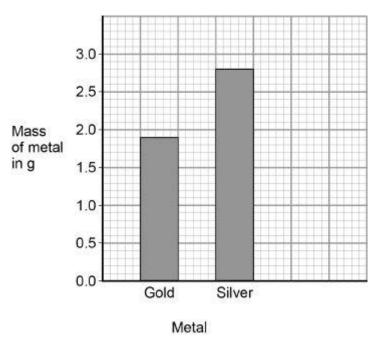
1 ______

Some surfboards are made from wood. The following table contains information about the materials in an addition polymer surfboard and a wooden surfboard.					
	Addition polymer surfboard	Wooden surfboard			
Relative strength	14	38			
Cost (£ per m³)	140	390			
Density (kg/m³)	50	150			
Disposal at end of life	Difficult to recycle	Can be used as fuel			
Disadvantages of a	ddition polymers				
Use the table above	ne of wood in a wooden s e and the equation: ensity in kg/m³ = $\frac{Mass}{Volume}$				

(2)

m³	Volume =
(3)	
(Total 14 marks)	

Q4.


A 9 carat gold ring is made from a mixture of metals.

The table below shows the mass of different metals in the ring.

The mass of the ring is 5.0 g

Metal	Mass of metal in g
Gold	1.9
Silver	2.8
Copper	0.3

(a) Plot the data for copper from the table above on the graph below. (separate only)

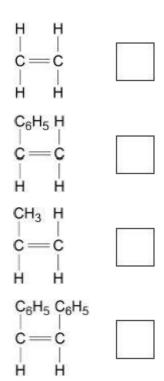
(b) The cost of gold is £30 per gram.

Calculate the cost of the gold used in the 9 carat gold ring.

Use the table above. (separate only)

	Cost of gold = £
Rings	can be made from 22 carat gold.
The ra 22 :9	atio of the mass of gold in 22 carat gold compared to 9 carat gold is
Calcu	late the mass of gold in a 22 carat gold ring of mass 5.0 g
Use th	ne table above. (separate only)
	Mass of gold =
Sugge carat	gold is 24 carats. est two reasons why silver and copper are mixed with gold to make 9 gold rings. (separate only)
Sugge carat (est two reasons why silver and copper are mixed with gold to make 9 gold rings. (separate only)
Sugge carat (est two reasons why silver and copper are mixed with gold to make 9 gold rings. (separate only)
Sugge carat (est two reasons why silver and copper are mixed with gold to make 9 gold rings. (separate only) er is obtained from copper ores or by recycling copper.
Sugge carat (est two reasons why silver and copper are mixed with gold to make 9 gold rings. (separate only) er is obtained from copper ores or by recycling copper. Copper ores are non-renewable.
Sugge carat (1 2	est two reasons why silver and copper are mixed with gold to make 9 gold rings. (separate only) er is obtained from copper ores or by recycling copper.
Sugge carat (est two reasons why silver and copper are mixed with gold to make 9 gold rings. (separate only) er is obtained from copper ores or by recycling copper. Copper ores are non-renewable. Copper ores can be obtained by mining.
Sugge carat (est two reasons why silver and copper are mixed with gold to make 9 gold rings. (separate only) er is obtained from copper ores or by recycling copper. Copper ores are non-renewable. Copper ores can be obtained by mining. Some scrap copper goes to landfill sites.
Sugge carat of 1	est two reasons why silver and copper are mixed with gold to make 9 gold rings. (separate only) er is obtained from copper ores or by recycling copper. Copper ores are non-renewable. Copper ores can be obtained by mining. Some scrap copper goes to landfill sites. three reasons why we should use recycled copper instead of copper copper ores.

(3)		
Total 10 marks)		


Q5.

Disposable cups are made from coated paper or poly(styrene).

The diagram below represents the structure of poly(styrene).

(a) Which small molecule is used to produce poly(styrene)?

Tick one box. (separate only)

(1)

(b) Which process is used to make poly(styrene) from small molecules?

Tick one box. (separate only)

Cracking

Distillation

Polymerisation	on			
Complete the		ov (conquete auto)		
ceramics	ers nom the b	composites	four	r
	monomers	-	olymers	two
When poly(sty		rom small molecules ca - e,		ecules
tate to famous				
join to form				
join to form	es.			
large molecule		called	·	
large molecule These large m	nolecules are			
large molecule These large m	nolecules are	e information about dis	posable cups.	
These large m The table belo	nolecules are	e information about dis	posable cups. Polystyrene	-
large molecule These large m	nolecules are	e information about dis	posable cups.	-
These large m The table belo	nolecules are ow gives some v materials ake 1 cup in	e information about dis	posable cups. Polystyrene	-
These large m The table beloe Source of rav Energy to ma	nolecules are ow gives some v materials ake 1 cup in	Coated paper cups Wood	Polystyrene Crude o	-
These large m The table belo Source of rav Energy to ma arbitrary units	nolecules are ow gives some v materials ake 1 cup in	Coated paper cups Wood 550	Polystyrene Crude o	-

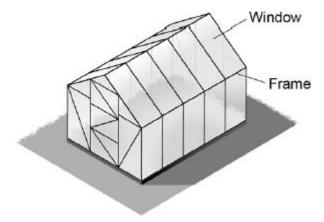
(4)
(Total 9 marks)

Q6.

Disposable cups are made from coated paper or poly(styrene).

The table below shows information on the life cycle assessments (LCAs) of disposable cups.

	Coated paper cups	Poly(styrene) cups
Raw materials	Wood	Crude oil
Mass of 1 cup in g	8.3	1.9
Energy to produce 1 cup in kJ	550	200
Energy released when 1 cup is burned in kJ	166	76
Biodegradable	Yes	No
Recyclable	No	Yes


(a)	Evaluate the use of coated paper compared with poly(styrene) to make disposable cups.
	Use the table above and your knowledge and understanding of LCAs.

	_
Calculate the energy needed to produce 1.00 k	g of coated paper cups.
Use the table above.	
Give your answer in standard form.	
Energy	= kJ
Melamine is a polymer used to make non-dispo	
Energy Melamine is a polymer used to make non-dispo Melamine does not melt when it is heated. Explain why. (separate only)	

_		
(2)		
marks)	(Total 10 m	

Q7.

The diagram shows a greenhouse.

A greenhouse frame can be made from wood or aluminium.

Table 1 gives some information about wood and aluminium.

Table 1

	Wood	Aluminium
Raw material	Renewable	Non-renewable
Mass of greenhouse frame in kg	80	20
Useful lifetime in years	20	50
End of useful life	Can be chopped up and used as fuel	Can be recycled into new aluminium products

(a)	Evaluate the use of each material for making greenhouse frames.
	Use Table 1 .

	nhouse frames are transported by lorry.
The lo	orry used can carry a maximum load of 12 tonnes.
	late the largest number of wooden greenhouse frames which could nsported by the lorry.
Use T	able 1.
100 kg	g = 1 tonne
	Number of wooden greenhouse frames =
	ore sustainable to make greenhouse frames from recycled aluminium rom aluminium from aluminium ore.
Give 1	two reasons why.
0.00	
1	

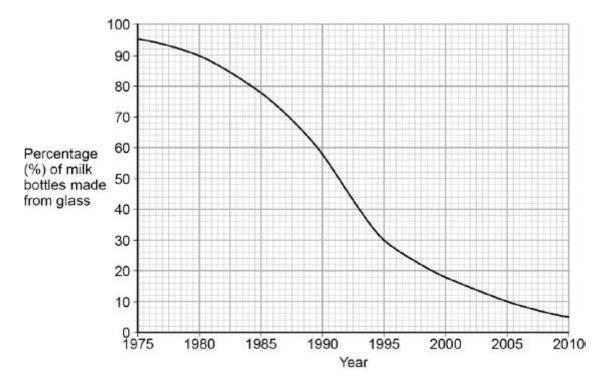
(d) Greenhouse windows can be made from glass or from polymers.

Table 2 gives information about glass and a polymer.

Table 2

	Glass	Polymer
Density in g / cm ³	2.8	1.2
Cost in £ per m²	20	28
Effect of sunlight	No effect	Discolours over time

Suggest **one** advantage of making greenhouse windows from the polymer rather than from glass.


Use Table 2.

-			
-			
(1)			
	<u>-</u>		
marks)	(Total 9		

Q8.

Plastic and glass can be used to make milk bottles.

The figure below shows the percentage of milk bottles made from glass between 1975 and 2010.

(a) Plot the points and draw a line on the figure above to show the percentage of milk bottles made from materials **other** than glass between 1975 and 2010.

(b) The table below gives information about milk bottles.

	Glass milk bottle	Plastic milk bottle
Raw materials	Sand, limestone, salt	Crude oil
Bottle material	Soda-lime glass	HD poly(ethene)
Initial stage in production of bottle material	Limestone and salt used to produce sodium carbonate.	Production of naphtha fraction.

(3)

Maximum temperature in production process	1600 °C	850 °C
Number of times bottle can be used for milk	25	1
Size(s) of bottle	0.5 dm ³	0.5 dm³, 1 dm³, 2 dm³, 3 dm³
Percentage (%) of recycled material used in new bottles	50 %	10 %

Evaluate the production and use of bottles made from soda-lime glass and those made from HD poly(ethene).

Use the information given and your knowledge and understanding to justify your choice of material for milk bottles.

Q9.

Metals are extracted from ores in the Earth's crust.

(a)	Why is copper used in the manufacture of computers?

Tick	(✓)	one	box.	

Because it has a high density.

Because it does not react with water.	
Because it is a good conductor of electricity.	
	(1)

(b) **Figure 1** shows the percentage (%) by mass of some metals in the Earth's crust.

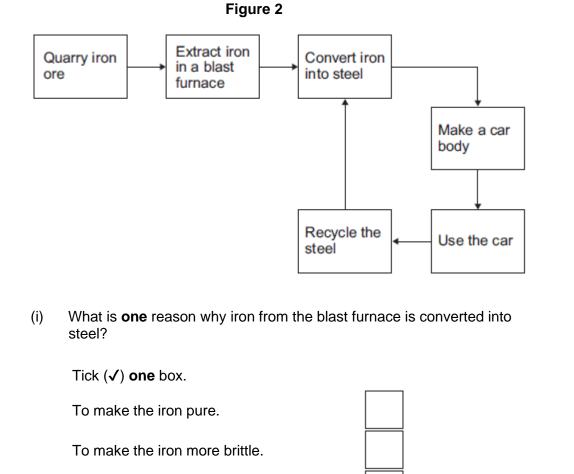
Figure 1

(i) What is the percentage by mass of magnesium in the Earth's crust?

_____% **(1)**

(2)

(ii) On **Figure 1** draw the bars for:


- calcium at 3.6% by mass
- iron at 5.0% by mass.

(c) An ore of zinc contains zinc carbonate.

The equation for the reaction when zinc carbonate is heated is:

(d)

Tick (√) one box. corrosion decomposition electrolysis	in the equation is a gas at room temperature (2	? 0
corrosion decomposition electrolysis Vhich substance ir C)? Tick (one box.	in the equation is a gas at room temperature (2	? 0
decomposition electrolysis Which substance in C)? Tick (one box.		? 0
electrolysis Vhich substance ir C)? Tick (√) one box.		? 0
Vhich substance ir C)? Tick (√) one box.		20
Vhich substance ir C)? Tick (√) one box.		20
C)? Tick (√) one box.		20
, ,		
zinc carbonate		
zinc oxide		
carbon dioxide		
ourborr dioxido		
-	e below to show the number of atoms of carbor nula of zinc carbonate.	n and
Element	Number of atoms in the formula ZnCO ₃	
zinc, Zn	1	
carbon, C		
oxygen, O		
When 125 g zinc c		ed.
	s of carbon dioxide produced.	
Calculate the mass		
	Element zinc, Zn carbon, C oxygen, O When 125 g zinc	the formula ZnCO ₃ zinc, Zn 1 carbon, C

(ii)	Apart from cost, give three different reasons why steel should be
	recycled.

recyclea.		
1		
2		
3		

(Total 13 marks)

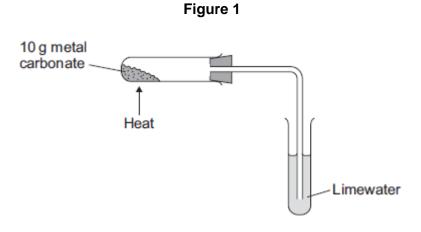
(3)

(1)

Q10.

Metals are extracted from ores in the Earth's crust.

To make alloys for specific uses.


Some ores contain metal carbonates and some ores contain metal oxides.

(1)

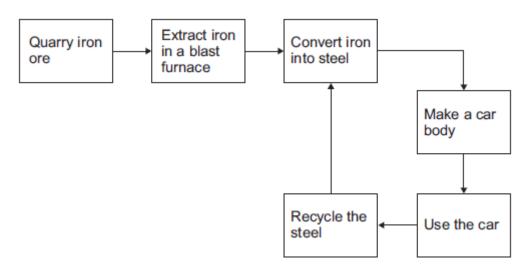
(a)	(i)	Name the type of reactine heated.	ion that happens when a metal carbonate is
(ii)	(ii)	Which solid product is f	(1) ormed when copper carbonate is heated?
		Tick (√) one box.	
		copper	
		copper nitrate	
		copper oxide	
		copper sulfide	

(b) A student investigated heating four metal carbonates.

Figure 1 shows the apparatus used.

The student heated each metal carbonate for five minutes.

The table below shows the results.


Metal carbonate	Mass of metal carbonate at start in g	Mass of solid after heating for 5 minutes in g	Observations
Copper carbonate	10.0	6.9	Limewater turns cloudy
Magnesium carbonate	10.0	9.1	Limewater turns cloudy

Potassium carbonate	10.0	10.0	Limewater does not turn cloudy
Zinc carbonate	10.0	8.3	Limewater turns cloudy

w the reactivity series can be used to predict which metal eacts most easily when heated.

(c) Figure 2 shows a simple life cycle of a car body.

Figure 2

Com	plete the sentence.
Iron	ores must contain enough iron to
Som	ne iron ores contain iron oxide (Fe ₂ O ₃).
Com	aplete and balance the equation for a reaction to produce iron iron oxide.
	$_$ Fe ₂ O ₃ + $_$ C \longrightarrow $_$ + $_$ CO
	two reasons why iron produced in a blast furnace is converted steel.
Whe	en a car reaches the end of its useful life, the car body can be:
Wh:	en a car reaches the end of its useful life, the car body can be:
Whe	·
Whe	recycled
Give	recycled reused
Give	recycled reused sent to landfill. three reasons why a steel car body should be recycled and no
; Give	recycled reused sent to landfill. three reasons why a steel car body should be recycled and no
; Give	recycled reused sent to landfill. three reasons why a steel car body should be recycled and no
Give	recycled reused sent to landfill. three reasons why a steel car body should be recycled and no