M1.(a) all points correct

±1 small square allow 1 mark for 6 or 7 plots

2

Year	Percentage (%) of bottles made from other materials
1975	5
1980	10
1985	22
1990	42
1995	70
2000	72
2005	90
2010	95

1

(b) Level 3 (5–6 marks):

A detailed and coherent argument is provided which considers a range of issues and comes to a conclusion consistent with the reasoning.

Level 2 (3-4 marks):

An attempt to describe the advantages and disadvantages of the production and uses is made, which comes to a conclusion. The logic may be inconsistent at times but builds towards a coherent argument.

Level 1 (1–2 marks):

Simple statements made. The logic may be unclear and the conclusion, if present, may not be consistent with the reasoning.

0 marks:

No relevant content.

Indicative content

- glass 2 stages in production of soda-lime glass
- glass second stage, heating sand, limestone and sodium carbonate
- HDPE 3 stages in production
- HDPE second stage, cracking of naphtha to obtain ethene
- HDPE third stage, polymerisation of ethene
- fewer stages in glass production, may be quicker
- higher temperature in glass manufacture, therefore maybe higher energy requirement

- glass bottle can be reused
- consideration of collection / cleaning costs to reuse glass bottles
- other glass products can be made from recycled glass
- plastic has greater range of sizes
- both produced from limited raw materials
- higher percentage recycled materials in glass conserves raw materials

This indicative content is not exhaustive, other creditworthy responses should be awarded marks as appropriate.

6

[9]

M2. (a)	giant s	tructure / lattice / layers / close packed	
		first 3 marks can be obtained from a suitably labelled diagram	
		incorrect structure or bonding or particle = max 3	
			1
		made up of atoms / <u>positive</u> ions	
		· · · · · · · · · · · · · · · · · · ·	1
		with delocalized / free electrons	
			1
		so electrons can move / flow through the metal	
		accept so electrons can carry charge through the metal	
		accept so electrons can form a current	
		accept so electrons carryonn a carrent	1
	(b)	an alloy (is a metal which) has different types / sizes of atoms	
		accept converse for pure metal throughout	
		both marks can be obtained from suitable diagrams	
		allow made of different metals	
		allow mixture of metals / atoms / elements	
		ignore particles	
		ignore properties	
		do not accept compound	
			1
		alloy has distorted layers	
		allow layers are unable to slide	
			1
	(c)	(i) can return to its original shape	
		accept shape memory alloy	
		accept smart alloy	
		ignore other properties	
			1
		(ii) (pure copper is too) soft	
		accept converse	
		accept malleable or bends	
		accept copper is running out	
		ignore references to strength and weakness	
			1

(iii) aluminium oxide

accept alumina accept Al_2O_3 ignore bauxite / aluminium ore

1

- (iv) any **one** from:
 - different conditions
 - different catalyst
 - different pressure
 allow different concentration
 - different temperature.

do **not** accept different monomers

1

- (d) any **two** from:
 - accurate
 - sensitive
 - rapid
 - small sample.

both needed for 1 mark

[11]

1

M3. (a)	(Chromi	nium =) 20 in correct order		1
		(Nic	kel =) 8 accept Chromium = 8 and Nickel = 20 for 1 mark	1
	(b)	(i)	(because iron is made up of only) one type of <u>atom</u>	1
		(ii)	not strong allow too soft or too flexible accept it rusts / corrodes or that it could wear away accept could change shape / bend accept layers / atoms could slide (over each other)	1
		(iii)	structure is different / distorted / disrupted accept not in layers or not regular	1
			so it is difficult for layers / atoms / particles to slip / slide (over each other) accept layers cannot slip / slide	

1

[6]

M4. (a)	(alloy) at	toms / ions / particles not in layers accept layers are distorted accept different (size) particles / atoms	1
		so, (alloy) layers / atoms / ions / particles can't slide if no other mark awarded allow (an alloy) is a mixture of metals for 1 mark	1
	(b)	diamonds have a giant covalent structure	1
		diamonds have strong bonds between carbon atoms	1
	(c)	(i) a compound	1
		(ii) CH₄	1
		(iii) covalent	1
	(d)	methane has a low boiling point or boiling point less than 20°C molecules	1
		because it has small molecules accept it has forces between molecules	

[9]

1

M5.	(6	a)	2,4 allow electrons in any position on correct shells	1
	(b)	(ele	ectron) 79	1
		neu	itron allow phonetic spelling	1
		118		1
	(c)	(i)	16 and 9 in this order	1
		(ii)	 any two from: ignore reasons about colour / lustre / corrosion / rarity (100% / pure) gold is soft allow layers can slide in pure gold 	
			(alloyed) to make the metal hard(er) ignore just 'the ring is an alloy' allow (alloyed) to stop the layers sliding allow (alloyed) to make the metal strong	
			• gold is expensive or alloy is less expensive	2

M6. (a) 2.5

correct answer with or without working gains **2** marks if answer incorrect
2.6 / 2.625 / 2.62 / 2.63 **or** recognise 3.0 as anomalous gains **1** mark
accept answer in table
ignore units

2

(b) as the percentage of cement increases the mass needed to break the sleeper increases

allow 50% cement is the strongest **or** 30% sand is the strongest **or** the highest amount of cement is the strongest

or

as the percentage of sand increases the mass needed to break the sleeper decreases

1

- (c) (i) any **two** from:
 - availability of materials
 - cost (of materials)
 - time needed (for the concrete mixture) to set/harden
 - compression strength (of the concrete)
 accept weight of the train
 - testing full size (concrete railway sleepers)
 accept any test on full size sleepers
 accept 'how well it would last / weather'

2

(ii) any **four** from:

maximum of **3** marks if no comparison made ignore yes or no

negative concrete:

allow converse statements for wood

- more fossil fuel / energy / heat (needed to produce cement / concrete)
- cement / concrete resources / limestone not renewable whereas wood is renewable
- quarrying limestone destroys landscapes / habitats whereas growing wood improves landscapes / habitats
 allow quarrying causes noise pollution / dust / etc.
- making cement / concrete releases carbon dioxide / greenhouse gases whereas growing wood absorbs carbon dioxide / greenhouse gases / is carbon neutral allow making cement / concrete causes global warming / climate change whereas growing wood reduces global warming / climate change ignore loss of trees / deforestation (and resultant effects such as an increase in CO₂)

positive concrete:

(less resources are needed because) cement / concrete sleepers last longer or wood rots / needs replacing ignore strength / ease of breaking ignore weathering / effects of acid rain

4

[9]