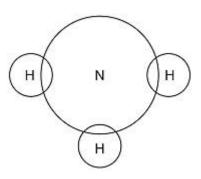
All questions are for separate science students only

This	question is about metals and the reactivity	ty series.
(a)	Which two statements are properties of	•
(ω)		most transmission
	Tick (✓) two boxes.	
	They are soft metals.	
	They form colourless compounds.	
	They form ions with different charges.	
	They have high melting points.	
	They have low densities.	
(b)	A student added copper metal to colour	ess silver nitrate solution.
	The student observed:	
	 pale grey crystals forming 	
	 the solution turning blue. 	
	Explain how these observations show the copper.	nat silver is less reactive than
(c)	A student is given three metals, X , Y and	d Z to identify.
	The metals are magnesium, iron and co	pper.
	Plan an investigation to identify the three reactions with dilute hydrochloric acid.	e metals by comparing their

(d)

our plan should give valid	results.	
e isotopes.	mass numbers and percentage abundance	s of
Mass number	Percentage abundance (%)	
203	30	
205	70	
alculate the relative atomic	c mass (A_r) of metal M .	
ive your answer to 1 decin	nal place.	
Relative atom	nic mass (1 decimal place) =	
Molative atom	110 mass (1 decimal place) =	
	(Tota	ıl 11


Q2.

This question is about ammonia, NH₃

(a) Complete the dot and cross diagram for the ammonia molecule shown in **Figure 1**.

Show only the electrons in the outer shell of each atom.

Figure 1

(2)

(3)

)	Give one limitation of using a dot and cross diagram to represent an ammonia molecule.	
	ammonia moloculo.	
		-
		_
	Explain why ammonia has a low boiling point.	
	You should refer to structure and bonding in your answer.	
		_
		_
		_
		_
		_

Ammonia reacts with oxygen in the presence of a metal oxide catalyst to produce nitrogen and water.

(d) Which metal oxide is most likely to be a catalyst for this reaction?Tick (✓) one box.

CaO		
Cr ₂ O ₃		
MgO		
Na₂O		
		(1)
e 2 shows th	ne displayed formula equation for the reaction.	

Figure

Figure 2

$$4H-N-H + 3O=O \longrightarrow 2N=N + 6H-O-H$$

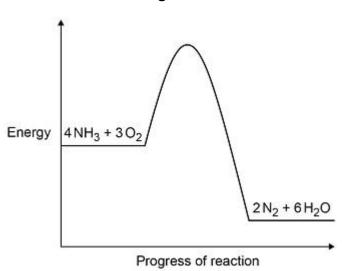
|
H

The table shows some bond energies.

Bond	N — Н	0=0	$N \equiv N$	0 — н
Bond energy in kJ/mol	391	498	945	464

(e) Calculate the overall energy change for the reaction. Use Figure 2 and the table. Overall energy change = _____ kJ/mol (3) (f) Explain why the reaction between ammonia and oxygen is exothermic. Use values from your calculation in part (e).

(2)



(g) **Figure 3** shows the reaction profile for the reaction between ammonia and oxygen.

Complete Figure 3 by labelling the:

- activation energy
- overall energy change.

Figure 3

(2) (Total 14 marks)

Q3.

Titanium is a transition metal.

Titanium is extracted from titanium dioxide in a two-stage industrial process.

Stage 1
$$TiO_2 + 2C + 2CI_2 \rightarrow TiCI_4 + 2CO$$

Stage 2
$$TiCl_4 + 4 Na \rightarrow Ti + 4 NaCl$$

(a) Suggest **one** hazard associated with **Stage 1**.

(1)

	Suggest why the reaction in Stage 2 is carried out in an atmosphere of argon and not in air.
	Titanium chloride is a liquid at room temperature.
	Explain why you would not expect titanium chloride to be a liquid at room temperature.
ta	ge 2, sodium displaces titanium from titanium chloride.
	Sodium atoms are oxidised to sodium ions in this reaction.
	Why is this an oxidation reaction?

	Na	→ +	
In Stage 2,	40 kg of	f titanium chloride was added to 20 kg of sodium.	
The equation	on for th	ne reaction is:	
		TiCl ₄ + 4 Na → Ti + 4 NaCl	
Relative ato	omic ma	asses (A_r): Na = 23 CI = 35.5 Ti = 48	
Explain wh	y titaniur	m chloride is the limiting reactant.	
You must s	show yo	our working.	
For a Stage	e 2 react	tion the percentage yield was 92.3%	
The theoret	tical max	ximum mass of titanium produced in this batch was	13.5
Calculate th	he actua	al mass of titanium produced.	
		Mass of titanium =	 kg

Q4.

Older cars are tested each year to measure the amount of pollutants contained in exhaust fumes.

The table below shows the maximum allowed percentages of exhaust pollutants

for petrol cars.

Age of car	Maximum allowed percentage (%) of exhaust pollutant			
in years	Carbon monoxide	Unburned hydrocarbons		
16-24	0.30	0.02		
3-16	0.20	0.02		

	Suggest two reasons why the maximum allowed percentage of carbon monoxide has been decreased for newer cars.
	1.
	2.
	Give one reason for having a maximum allowed percentage of unburned hydrocarbons in exhaust fumes.
	es of nitrogen are also pollutants contained in exhaust fumes.
•	Describe how oxides of nitrogen are produced when petrol is burned in car engines.

	lytic converters are fitted to car exhausts to reduce the amount of pollutants used into the atmosphere.	(
e)	Nitrogen dioxide is an oxide of nitrogen.	
- /	Nitrogen dioxide reacts to produce nitrogen and oxygen in catalytic converters.	
	Complete the equation for this reaction.	
	The equation should be balanced.	
	$__NO_2(g) \rightarrow _\+ O_2(g)$	(
f)	Give two effects of atmospheric pollution which are reduced by using catalytic converters.	•
	1.	
	2.	
		(
g)	The catalyst in catalytic converters is a mixture of three elements.	
	Where in the periodic table are these elements most likely to be found?	
	Tick one box.	
	Alkali metals	
	Halogens	
	Noble gases	
	Transition metals	

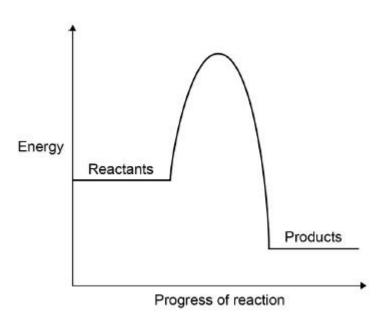
The reaction can be represented as: pink cobalt compound + hydrochloric acid ⇒ blue cobalt compound water The forward reaction is endothermic.	nd +
water The forward reaction is endothermic.	nd +
pink cobalt compound + hydrochloric acid ⇒ blue cobalt compound water The forward reaction is endothermic.	nd +
water The forward reaction is endothermic.	nd +
When both cobalt compounds are present in a solution at equilibrium, the equilibrium mixture is purple.	
(a) What is meant by equilibrium?	
(b) The equilibrium mixture is cooled.	
Explain what happens to the concentration of the pink cobalt compou	und.
(c) More hydrochloric acid is added.	

Explain what happens to the colour of the equilibrium mixture

Why does	cobalt form different coloured compounds?	
An oxide o	of cobalt has the formula Co₂O₃	
Vhich cob	palt ion is present in this oxide?	
Γick (√) o	ne box.	
Co+		
Co ²⁺		
Co ³⁺		
Co ⁴⁺		
Cobalt cor	npounds can act as catalysts.	
Which two	statements about cobalt compounds are correct	ct?
Γick (✔) tv	vo boxes.	
They allo	w reactions to reach equilibrium more quickly.	
They are compoun	reactants in reactions catalysed by cobalt ds.	
They are	used up when acting as catalysts.	
They incr	ease the equilibrium yield of reactions.	
They prov	vide a different reaction pathway.	0 0

(g) The reaction of hydrogen with carbon monoxide is catalysed by cobalt

metal.


Balance the equation for the reaction.

(h) C_6H_{14} is an alkane.

What is the formula of an alkane containing 18 hydrogen atoms?

(1)

(i) The graph shows a reaction profile diagram for a reaction **without** a catalyst.

On the graph:

- draw the reaction profile diagram for a catalysed reaction
- draw and label an arrow to show the activation energy for the reaction without a catalyst.

(2) (Total 16 marks)

Q6.

An atom of aluminium has the symbol ²⁷A

(a) Give the number of protons, neutrons and electrons in this atom of aluminium.

Number of protons _____

metals.	able, the transitio		·	
elements are sh	hown in the table below. Transition elements		Group 1 elements	
	Chromium	Iron	Sodium	Caesium
Melting point in °C	1857	1535	98	29
Formula of oxides	CrO Cr ₂ O ₃ CrO ₂	FeO Fe ₂ O ₃ Fe ₃ O ₄	Na₂O	Cs ₂ O
	CrO₃			
,	nowledge and th			

AQA Chemistry GCSE - Properties of Transition Metals	PhysicsAndMathsTutor	
	(6)	

PhysicsAndMathsTutor.com

(Total 10 marks)