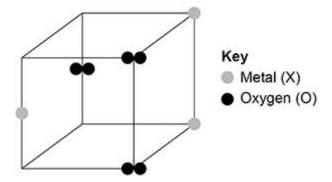
(1)

Questions are for both separate science and combined science students unless indicated in the question

Q1						
	This	question is about elements, compound	s and mixtures.			
	(a)	(a) Substance A contains only one type of atom.				
		Substance A does not conduct electri	city.			
		Which type of substance is A ?				
		Tick (✓) one box.				
		Compound				
		Metallic element				
		Mixture				
		Non-metallic element				
				(1)		
	(b)	Substance B contains two types of ato	oms.			
		The atoms are chemically combined to	ogether in fixed proportions.			
		Which type of substance is B ?				
		Tick (✓) one box.				
		Compound				
		Metallic element				
		Mixture				

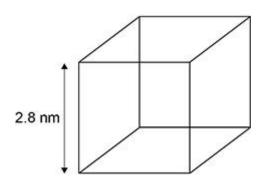

(c) What is the name of the elements in Group 0 of the periodic table?

Tick (✓) one box.

Non-metallic element

	Alkali metals		
	Halogens		
	Noble gases		
	Transition metals		
(d)	Which statement about the elements in	Group 0 is correct?	
	Tick (✓) one box.		
	All elements in the group are very reactive.		
	All elements in the group form negative ions.		
	The boiling points increase down the group.		
	The relative atomic masses (A_r) decrease down the group.		
(e)	Neon is in Group 0.		
	What type of particles are in a sample o	f neon?	
	Tick (✓) one box.		
	Atoms		
	lons		
	Molecules		

Figure 1



Determine the empirical formula of this oxide.

A nanoparticle of a metallic element is a cube.

Figure 2 shows a diagram of the nanoparticle.

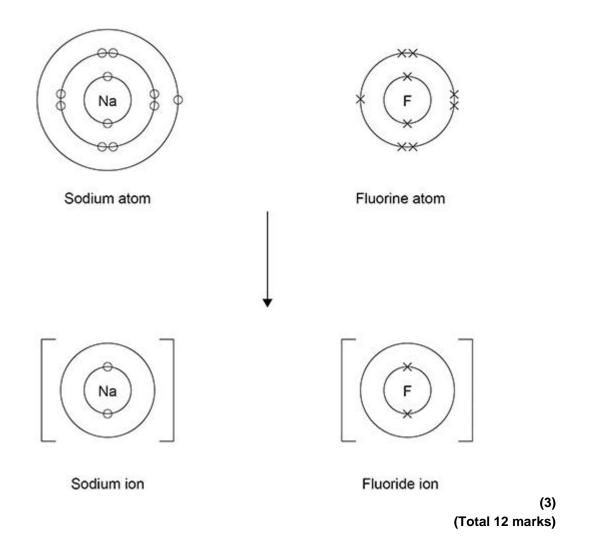
Figure 2

(g) The surface area of a cube is given by the equation:

surface area = $(length of side)^2 \times 6$

Calculate the surface area of the cube in Figure 2.

Give your answer to 2 significant figures. (separate only)


	5	Surface area (2 significant	figures) =	
า)	Fine and coarse	e particles of the metallic e	element are also	cubes.
	The length of a coarse particle	fine particle cube is 10 tin	nes smaller than	the length of a
How does the surface area to volume ratio of the fine particle cul compare with that of the coarse particle cube?				
	Tick (✓) one bo	x. (separate only)		
	Both surface a	rea to volume ratios are th	ne same.	
	The surface are	ea to volume ratio of the fer.	ine particle is	
	The surface are 10 times smaller	ea to volume ratio of the fer.	ine particle is	5 - 5 S - 5
				(Total
				(1014)
				(10141
'h¦o		t Crown 1 alamanta		(1014)
	•	t Group 1 elements.		·
his a)	•	t Group 1 elements. 1 to show the electronic	structure of a por	·
	•	·	structure of a pot	·
	•	1 to show the electronic	structure of a por	tassium atom.
	Complete Table	1 to show the electronic Table 1		tassium atom.
	Complete Table Atom	Table 1 Number of electrons	Electronic str	tassium atom.
	Complete Table Atom Sodium	Table 1 Number of electrons	Electronic str	tassium atom.
	Atom Sodium Potassium	Table 1 Number of electrons	Electronic str	tassium atom.
a)	Atom Sodium Potassium	Table 1 Number of electrons 11 19 I elements have similar cl	Electronic str	tassium atom.
a)	Atom Sodium Potassium Why do Group	Table 1 Number of electrons 11 19 I elements have similar class. same number of	Electronic str	tassium atom.
a)	Atom Sodium Potassium Why do Group 7 Tick () one bo They have the electron shells.	Table 1 Number of electrons 11 19 I elements have similar characters. same number of outer	Electronic str	tassium atom.

(1)

		(
(c) What is the	ne type of bonding in sodium?	
Tick (✓)	one box.	
Covalen	t	
Ionic		
Metallic		
		(
Γable 2 shows vith water.	observations made when lithium, potassiu	m and rubidium react
	Table 2	
Element	Observations	
Lithium	Bubbles slowly Floats Moves slowly	
Sodium	1	
Potassium	Bubbles very quickly Melts into a ball Floats Moves very quickly Flame	
Rubidium	Sinks Melts into a ball Explodes with a flame	
d) Give two	observations you could make when sodiu	n reacts with water.
•	ur answers in Table 2 .	
•		(
e) How does	s the reactivity of the elements change goil	an dayun Crayna 10

1	
_	
2	
_	
٧	Which gas is produced when Group 1 elements react with water?
T	Tick (✓) one box.
(Carbon dioxide
	Hydrogen
	Nitrogen
(Oxygen
S	Sodium fluoride is an ionic compound.
	The diagram below shows dot and cross diagrams for a sodium atom and fluorine atom.
	Complete the diagram below to show what happens when a sodium atom and a fluorine atom react to produce sodium fluoride.
Υ	ou should:
•	complete the electronic structures of the sodium ion and the fluoride ion
•	give the charges on the sodium ion and the fluoride ion.

(2)

Q3.

This question is about atomic structure and the periodic table.

Gallium (Ga) is an element that has two isotopes.

(a) Give the meaning of 'isotopes'.

You should answer in terms of subatomic particles.

(b) The table below shows the mass numbers and percentage abundances of the isotopes of gallium.

number	(%)
69	60
71	40

	Calculate the relative atomic mass (A _r) of gallium.	
	Give your answer to 1 decimal place.	
	Relative atomic mass (1 decimal place) =	(
Sall	ium (Ga) is in Group 3 of the modern periodic table.	•
c)	Give the numbers of electrons and neutrons in an atom of the isotope $^{69}_{31}$ Ga	
	Number of electrons	
	Number of neutrons	
d)	What is the most likely formula of a gallium ion?	
	Tick (✓) one box.	
	Ga+	
	Ga⁻	
	Ga³+	
	Ga³-	
		(
e)	Gallium was discovered six years after Mendeleev published his periodic table.	
	Give two reasons why the discovery of gallium helped Mendeleev's	

periodic table to become accepted.

	(Total 9
- 1. : .	anne attenties de set One en Aleban ente
(a)	question is about Group 1 elements. Give two observations you could make when a small piece of potassium is added to water.
	1
	2
(b)	Complete the equation for the reaction of potassium with water.
	You should balance the equation.
	$K + H_2O \rightarrow +$
(c)	Explain why the reactivity of elements changes going down Group 1.

Sodium reacts with oxygen to produce the ionic compound sodium oxide.

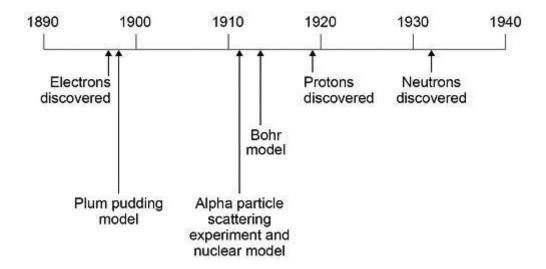
(4)

Oxygen is a Group 6 element.

(d) Draw a dot and cross diagram to show what happens when atoms of sodium and oxygen react to produce sodium oxide.

Diagram

and oxygen?	
Explain why sodium oxide has a high melting point.	


Q5.

This question is about the development of scientific theories.

The diagram below shows a timeline of some important steps in the development of the model of the atom.

(3)

(2)

(a) The plum pudding model did not have a nucleus.

Describe **three** other differences between the nuclear model of the atom and the plum pudding model.

1	 	 	
2			
3			

(b) Niels Bohr adapted the nuclear model.

Describe the change that Bohr made to the nuclear model.

(c) Mendeleev published his periodic table in 1869.

Mendeleev then reversed the order of some pairs of elements.
A student suggested Mendeleev's reason for reversing the order was to arrange the elements in order of atomic number.
Explain why the student's suggestion cannot be correct.
Use the diagram above.
Give the correct reason why Mendeleev reversed the order of some pairs of elements.

Q6.

This question is about the elements in Group 7 of the periodic table.

Table 1 shows the melting points and boiling points of some of the elements.

Table 1

Element	Melting point in °C	Boiling point in °C
Fluorine	-220	-188
Chlorine	-101	– 35
Bromine	-7	59

1	(a)	What is the	state of	hromine	at 100	$^{\circ}C$?
ı	(a)	vviiat is tile	State Of		al IUU	U:

Use Table 1.

Tick (✓) one box.

Gas

	Liquid	
	Solid	
(b)	What temperature does chlorine gas condense at to form a liquid?	(1)
(~)	Use Table 1 .	
	Temperature = °C	
	Temperature = C	(1)
(c)	Complete the sentences.	
	Going down Group 7 the melting points	
	This is because the size of the molecules increases so the intermolecular forces	
	·	(2)
A tea	acher investigated the reaction of iron with chlorine.	
The	diagram below shows the apparatus used.	
	Iron	
Chl	orine gas in Excess chlorine gas out Heat Glass tube	
(d)	Why did the teacher do the investigation in a fume cupboard?	
	Tick (✓) one box.	
	Chlorine gas is coloured.	
	Chlorine gas is flammable.	
	Chlorine gas is toxic.	
		(1)
(e)	The word equation for the reaction is:	

Page 13 of 36

(2)

iron + chlorine → iron chloride

Iron chloride is a solid.

The teacher weighed the glass tube and contents:

- before the reaction
- after the reaction.

What happened to the mass of the glass tube and contents during the reaction?

Give **one** reason for your answer.

The mass of the glass tube and contents _____

Reason _____

The teacher repeated the investigation with bromine gas and with iodine gas.

Table 2 shows the results.

Table 2

Element	Observation	
Chlorine	Iron burns vigorously with an orange glow	
Bromine	Iron burns with an orange glow	
lodine	Iron slowly turns darker	

(f) Fluorine is above chlorine in Group 7.

Predict what you would observe when fluorine gas reacts with iron.

Use **Table 2**.

(g) Balance the equation for the reaction between iron and bromine.

2Fe + ____
$$Br_2 \rightarrow 2 FeBr_3$$

(1)

(1)

(h) Calculate the relative formula mass (M_r) of FeBr₃

Relative atomic masses (A_r): Fe = 56 Br = 80

(1)

Relative formula mass $(M_r) = $	
	(2)
	(2)
	Total 11 marks)

Q7.

This question is about the halogens.

Table 1 shows the melting points and boiling points of some halogens.

Table 1

Element	Melting point in °C	Boiling point in °C
Fluorine	-220	-188
Chlorine	-101	–35
Bromine	-7	59

(a) What is the state of bromine at 0 °C and at 100 °C?

Tick (✓) one box.

State at 0 °C	State at 100 °C	
Gas	Gas	
Gas	Liquid	
Liquid	Gas	
Liquid	Liquid	
Solid	Gas	
Solid	Liquid	

(b) Explain the trend in boiling points of the halogens shown in **Table 1**.

Why is it not correct to molecule is 59 °C?	say that the boiling point of a single bromine
reacts with each of the	halogens in their gaseous form.
diagram below shows the	he apparatus used.
alogen gas in ——	Excess halogen gas out Heat Glass tube
Give one reason why	this experiment should be done in a fume cupboard.
Explain why the reacting group.	vity of the halogens decreases going down the

in the above diagram.	ion of Iron with	chlorine using the apparatu
The word equation for the react	ion is:	
iron + chlori	ne o iron chlor	ide
The teacher weighed: the glass tube the glass tube and iron be the glass tube and iron ch		
Table 2 shows the teacher's res		Todollon.
Table 2		
	Mass in g	
Glass tube	51.56	-
Glass tube and iron	56.04	-
Glass tube and iron chloride	64.56	
Calculate the simplest whole nu moles of iron atoms Determine the balanced equation	: moles of chlo	
·	CI = 35.5	

Q8.

This question is about the periodic table.

In the 19th century, some scientists tried to classify the elements by arranging them in order of their atomic weights.

The figure below shows the periodic table Mendeleev produced in 1869.

His periodic table was more widely accepted than previous versions.

	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	Group 7
Period 1	н						
Period 2	Li	Ве	В	С	N	0	F
Period 3	Na	Mg	Al	Si	Р	s	Cl
Period 4	K Cu	Ca Zn	*	Ti *	V As	Cr Se	Mn Br
Period 5	Rb Ag	Sr Cd	Y In	Zr Sn	Nb Sb	Mo Te	*

The atomic weight of tellurium (Te) is 128 and that of iodine (I) is 127
Why did Mendeleev reverse the order of these two elements?
Mendeleev left spaces marked with an asterisk *
He left these spaces because he thought missing elements belonged there.
Why did Mendeleev's periodic table become more widely accepted than previous versions?

Mende	eleev arranged the elements in order of their atomic weight.
What i	is the modern name for atomic weight?
Tick (/) one box.
Atomi	ic number
Mass	number
Relati	ive atomic mass
Relati	ive formula mass
Compl	lete the sentence.
	dine and astatine are in Group 7 of the modern periodic table.
ASIdlif	ne (At) is below iodine in Group 7.
	ne (At) is below iodine in Group 7.
Predic	
Predic	the formula of an astatine molecule
Prediction of the second of th	the formula of an astatine molecule the state of astatine at room temperature.
Prediction of the state of the	the formula of an astatine molecule the state of astatine at room temperature. Ila of astatine molecule
Prediction of the state at Sodium	the formula of an astatine molecule the state of astatine at room temperature. ula of astatine molecule at room temperature
Prediction of the state at Sodium	the formula of an astatine molecule the state of astatine at room temperature. ula of astatine molecule at room temperature m is in Group 1 of the modern periodic table.
Prediction of the state at Sodium	the formula of an astatine molecule the state of astatine at room temperature. ula of astatine molecule at room temperature m is in Group 1 of the modern periodic table.
Prediction of the state at Sodium	the formula of an astatine molecule the state of astatine at room temperature. ula of astatine molecule at room temperature m is in Group 1 of the modern periodic table.
Prediction of the state at Sodium	the formula of an astatine molecule the state of astatine at room temperature. ula of astatine molecule at room temperature m is in Group 1 of the modern periodic table.

(Total 10 marks)

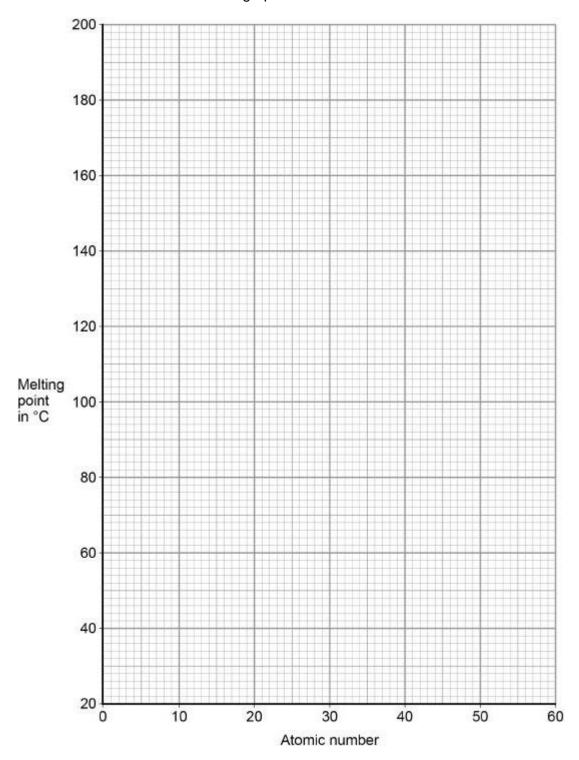
Q9.				
•	The	halogens are eleme	nts in Group 7.	
	(a)	Bromine is in Group	ρ 7.	
		Give the number of	f electrons in the outer shell of a bromine atom.	
	(b)	Bromine reacts with	n hydrogen. The gas hydrogen bromide is produced.	(1)
		What is the structu	re of hydrogen bromide?	
		Tick one box.		
		Giant covalent		
		Ionic lattice		
		Metallic structure		
		Small molecule		
	(c)	What is the formula	ı for fluorine gas?	(1)
		Tick one box.		
		F		
		F ₂		
		F ²		
		2F		
				(1)

A student mixes solutions of halogens with solutions of their salts.

The table below shows the student's observations.

	Potassium chloride (colourless)	Potassium bromide (colourless)	Potassium iodide (colourless)
Chlorine (colourless)		Solution turns orange	Solution turns brown
Bromine (orange)	No change		Solution turns brown
lodine (brown)	No change	No change	

(d)	Explain how the reactivity of the halogens changes going down Group 7.						
	Use the resu	Its in the table abo	ove.				
						(:	
A cc	ompany uses c	hlorine to produce	titanium ch	loride from	titanium diox	ide.	
(e)	What is the relative formula mass (M_r) of titanium dioxide, TiO ₂ ?						
	Relative atomic masses (A_r): $O = 16$ $Ti = 48$						
	Tick one box	ζ.					
	64						
	80						
	128						
	768						
						(


(f) The company calculates that 500 g of titanium dioxide should produce 1.2 kg of titanium chloride.

	900 g of titanium chloride.	2000
	Calculate the percentage yield.	
	Percentage viold -	
	Percentage yield =	Total 9 ma
0. This	question is about elements in Group 1.	
	acher burns sodium in oxygen.	
(a)	Complete the word equation for the reaction.	
	sodium + oxygen →	
(b)	What is the name of this type of reaction?	
	Tick one box.	
	Decomposition	
	Electrolysis	
	Oxidation	
	Precipitation	
(c)	The teacher dissolves the product of the reaction in water and adds universal indicator.	
	The universal indicator turns purple.	
	What is the pH value of the solution?	
	Tick one box.	

	ntain the same			
	formula of this i	on?		
Tick one bo	X			
H+				
Na+				
OH-				
O ²⁻				
	NaOH had a co			
What mass	of NaOH would	there be in 250	cm ³ of the solution?	

Lithium	3	181
Sodium	11	98
Potassium	19	63
Rubidium	37	X
Caesium	55	29

Plot the data from the table on the graph below.

Page 24 of 36

			(2)
	(h)	Predict the melting point, X , of rubidium, atomic number 37	
		Use the graph above.	
		Melting point = °C	
		(Total 10 mai	(1) rks)
Q1	1.		
	This	question is about metals and metal compounds.	
	(a)	Iron pyrites is an ionic compound.	
		The diagram below shows a structure for iron pyrites.	
		Key • Fe • S	
		Determine the formula of iron pyrites. Use the diagram above.	
			(1)
	(b)	An atom of iron is represented as ⁵⁶ ₂₆ Fe	
		Give the number of protons, neutrons and electrons in this atom of iron.	
		Number of protons	
		Number of neutrons	
		Number of electrons	
			(3)
	(c)	Iron is a transition metal.	
		Sodium is a Group 1 metal.	
		Give two differences between the properties of iron and sodium. (separate or	nly)
		1	

Explain why carbon can be used to extract nickel from nickel oxide.
An equation for the reaction is:
$NiO + C \rightarrow Ni + CO$
Calculate the percentage atom economy for the reaction to produce nickel.
Relative atomic masses (A_r): $C = 12$ $Ni = 59$
Relative formula mass (M_r): NiO = 75
Give your answer to 3 significant figures. (separate only)
Percentage atom economy =%

Q12.

This question is about Group 7 elements.

Chlorine is more reactive than iodine.

(a) Name the products formed when chlorine solution reacts with potassium

Explain why chlorine is more reactive than iodine.	
Chlorine reacts with hydrogen to form hydrogen chloride.	
Explain why hydrogen chloride is a gas at room temperature.	
Answer in terms of structure and bonding.	

(d) Bromine reacts with methane in sunlight.

The diagram below shows the displayed formulae for the reaction of bromine with methane.

The table below shows the bond energies and the overall energy change in the reaction.

	С—Н	Br—Br	C—Br	H—Br	Overall energy change
Energy in kJ/mol	412	193	x	366	-51

Calculate the bond energy **X** for the C—Br bond.

Use the diagram and the table above.

Bond energy **X** = _____ kJ/mol

(4)

(Total 11 marks)

Q13.

Figure 1 shows an outline of the modern periodic table.

L M Q

Figure 1

- J, L, M, Q and R represent elements in the periodic table.
- (a) Which element has four electrons in its outer shell?

Tick (✓) one box.

J L M Q R

vvilicii two e			in the same p	Defloa ?	
	an	a			
Which eleme	ent reacts wi	th potassium	to form an ic	onic compound?	
Tick (✓) one	e box.				
J	L	M	Q	R	
Which elem	ent forms ior	ns with differe	ent charges?		
Tick (✓) one	e box.				
J	L	M	Q	R	
Which elem	ent has three	e electron sh	ells?		
Tick (✓) one	e box.				
J	L	M	Q	R	

Figure 2 shows the table published by John Newlands in 1865.

The elements are arranged in order of their atomic weights.

Figure 2

Н	Li	Ве	В	С	N	0
F	Na	Mg	Al	Si	Р	S
CI	K	Ca	Cr	Ti	Mn	Fe
Co,Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce,La	Zr	Di,Mo	Ro,Ru
Pd	Ag	Cd	U	Sn	Sb	Te

Figure 3 shows the periodic table published by Dmitri Mendeleev in 1869.

Figure 3

33	Н								Ÿ		(4)			
90	Li	E	Be .		В		С		N	10	0		F	
1	Na	N	/lg		AI		Si		Р	33	s	3	CI	
K	Cu	Ca	Zn	?	?	Ti	?	٧	As	Cr	Se	Mn	Br	Fe Co Ni
Rb	Ag	Sr	Cd	Υ	In	Zr	Sn	Nb	Sb	Мо	Te	?	1	Ru Rh Pd

Mendeleev's table became accepted by other scientists whereas Newlands' table was not.

Evaluate Newlands' and Mendeleev's tables.

You should include:

- a comparison of the tables
- reasons why Mendeleev's table was more acceptable.

Use Figure 2 and Figure 3 and your own knowledge.

(6) (Total 11 marks)

Q14.

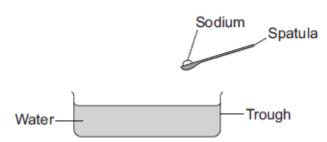
This question is about halogens and their compounds.

The table below shows the boiling points and properties of some of the elements in Group 7 of the periodic table.

Element	Boiling point in °C	Colour in aqueous solution
Fluorine	-188	colourless
Chlorine	-35	pale green
Bromine	Х	orange
Iodine	184	brown

(a)	Why does iodine have a higher boiling point than chlorine?
	Tick one box.
	lodine is ionic and chlorine is covalent

	lodine is less reactive than chlorine	
	The covalent bonds between iodine atoms are stronger	
	The forces between iodine molecules are stronger	(4)
(b)	Predict the boiling point of bromine.	(1)
(c)	A redox reaction takes place when aqueous chlorine is added to potassium iodide solution.	(1)
	The equation for this reaction is:	
	$Cl_2(aq) + 2KI(aq) \rightarrow I_2(aq) + 2KCI(aq)$	
	Look at table above.	
	What is the colour of the final solution in this reaction?	
	Tick one box.	
	Brown	
	Orange	
	Pale green	
	Colourless	(4)
(d)	What is the ionic equation for the reaction of chlorine with potassium iodide?	(1)
	Tick one box.	
	Cl₂ + 2K → 2KCl	
	$2I^{-} + CI_{2} \rightarrow I_{2} + 2CI^{-}$	
	I⁻ + CI → I + CI⁻	
	I⁻ + K⁺ → KI	


							(1)
	(e)	Why does	potassium iod	dide solution co	enduct electricity?		
		Tick one	box.				
		It contain	s a metal				
		It contain	s electrons wh	ich can move			
		It contain	s ions which c	an move			
		It contain	s water				(1)
	(f)	What are t	he products of	electrolysing p	ootassium iodide sol	ution?	(-)
		Tick one	box.				
		Product	at cathode	Product at a	node		
		hydrogen		iodine			
		hydrogen		oxygen			
		potassiun	n	iodine			
		potassiun	n	oxygen			
						/Total 6 m/	(1)
						(Total 6 ma	arks)
Q1	5.						
	This	question is	about elemen	ts and the peri	odic table.		
	(a)	Use the co	orrect answers	from the box t	o complete the sent	ences.	
	•	atoms	atomic weig	hts electro	ns proton nu	ımbers	
		Newlands	' and Mendele	ev's periodic ta	ables show the elem	ents in order of	
				· 			
		Following periodic	the discovery	of protons and		, the modern	
		table show	vs the element	ts in order of th	eir	·	
							(3)

(b) Figure 1 shows the position of six elements in the modern periodic table.

								ı ıgı	116 1								
							Н										
.i																	
а																	
(Fe										
b																	
	(i)	٧	Whic	h on e	e of t	hese	six (elem	ents	has	the lo	owes	t boil	ing p	oint'	?	
																	(1)
	(ii)	(Comp	olete	the s	sente	nce.										
		I	n the	e peri	odic	table	e, rub	idiur	n (Rl	o) is i	n Gr	oup .				_ •	(1)
	(iii)	٧	Vhich	n of t	hese	thre	e ele	men	ts is	the n	nost	react	tive?				(.,
			Tick	(√) c	one k	OOX.											
			Lithiu	um (L	_i)												
			Sodi	um (l	Na)			Ī									
				ssiur													(1)
	(iv)	,	Whic	:h tw	o sta	iteme	ents a	are c	orred	ct?							(.,
			Tick	(√) t	wo k	oxes	3.										
				has a ssiun		her d	ensit	y tha	an								
			Iron	is so	fter t	han p	ootas	sium	۱.								
			Iron	react	s vig	orou	sly w	ith w	/ater								
			Iron char		s ion	s tha	t hav	e dif	ferer	nt							
																	(2)

(c) Figure 2 shows sodium being put into water.

Describe three observations that can be seen when sodium is put into

water.

1.

2.

3.

(3)

(Total 11 marks)

Q16.

This question is about elements and the periodic table.

- (a) Newlands and Mendeleev both produced early versions of the periodic table.
 - (i) Complete the sentence.

In their periodic tables, Newlands and Mendeleev arranged the elements in

ord	er	of						

(1)

(ii) Name the particle that allowed the elements to be arranged in order of their atomic number in the modern periodic table.

 	 	_

(1)

(b) The diagram below shows the position of nine elements in the modern periodic table.

Li							•								F	
Va															CI	
K									Cu						Br	
Rb															1	
	(i)		ich or est bo				leme	ents s	show	n in t	he d	iagra	ım al	bove	has ⁻	the
	(ii)	poi Giv	oper a nts. e one assiur	othe							•					
	(iii) Explain why the reactivity of the elements increases going Group 1 from lithium to rubidium but decreases going d from fluorine to iodine.													7		

(4)

(Total 8 marks)