Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4493/01

CHEMISTRY

CHEMISTRY 3 FOUNDATION TIER

A.M. THURSDAY, 14 May 2015

1 hour

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	5			
2.	6			
3.	7			
4.	12			
5.	6			
6.	10			
7.	8			
8.	6			
Total	60			

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

Assessment will take into account the quality of written communication (QWC) used in your answer to question 8.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

		Answer all questions.	Examiner only
1.	(a) 	The fire triangle is used in fighting fires. State what is meant by the term 'fire triangle' and how it is used to fight fires. [3]	
	(b)	The pictures below show two methods of fighting fires. State how each method puts out the fire. [2] Method 1	
		Method 2	

.....

4493 010003

PMT

2. (a) (i) The table below shows the names, molecular formulae and structural formulae of some alkanes.

Complete the table.

[2]

Name	Molecular formula	Structural formula
methane	CH₄	
ethane		H H H—C—C—H H H
propane	C ₃ H ₈	H H H
butane	C ₄ H ₁₀	H H H H

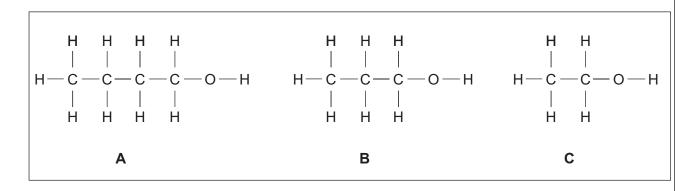
(ii) Octane contains 8 carbon atoms. Give the molecular formula for octane.

.....

[1]

Turn over.

© WJEC CBAC Ltd. (4493-01)


PMT

(b) (i) Compound **X** is made by a process called fermentation. The equation below shows the reaction that occurs.

$$C_6H_{12}O_6$$
 yeast $2C_2H_5OH$ + $2CO_2$ glucose compound **X**

Give the name of compound X. [1]

(ii) Choose from the box below the structural formula, **A**, **B** or **C**, of compound **X**. [1]

Letter

(iii) Give **one** everyday use of compound **X**. [1]

6

4493 010005

PMT

Ammonia is manufactured from nitrogen and hydrogen using the Haber process.

The equation below shows the formation of ammonia. (a)

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

State the numbers of nitrogen atoms and hydrogen atoms on the left hand side of (i) the equation. Use these numbers to show that the equation is balanced.

Number of nitrogen atoms Number of hydrogen atoms

- Give the meaning of (g) in the equation. (ii) [1]
- (b) The box below shows some of the conditions and terms used when describing the Haber process.

ammonia	hydrogen	450°C	iron	cooling
nitrogen	reversible	200 atmospl	neres	recycling

- (i) Choose from the box
 - the process used to remove the product from the reaction mixture, [1]

the method used to reduce the waste of reactants. [1]

Choose from the box the catalyst used in the reaction. State the purpose of a catalyst. [2]

Catalyst

Purpose

7

Examine
only

[3]

4. (a) The table below shows information about three substances. Complet	e the table.
--	--------------

Common name	Chemical name	Chemical formula
	calcium carbonate	CaCO ₃
quicklime	calcium oxide	
slaked lime		Ca(OH) ₂

- (b) A group of pupils investigated the composition of egg shells. They suspected that egg shells contain calcium carbonate. They carried out the following tests.
 - (i) Flame test

Choose from the box below the colour you would expect to see if egg shells contain calcium ions. [1]

Colour	
--------	--

(ii) Test for carbonate ions by adding dilute hydrochloric acid

Name the gas formed if egg shells contain carbonate ions. Describe the test you would carry out to identify this gas. Include the result for your test. [2]

Gas

Test and result

(iii) The pupils were told that 2.0 g of egg shells contain 1.9 g of calcium carbonate.

Calculate the percentage of calcium carbonate in these egg shells. [2]

Percentage = %

PMT

(c) The box below shows some of the concerns a local conservation group have about the opening of a new limestone quarry in their area.

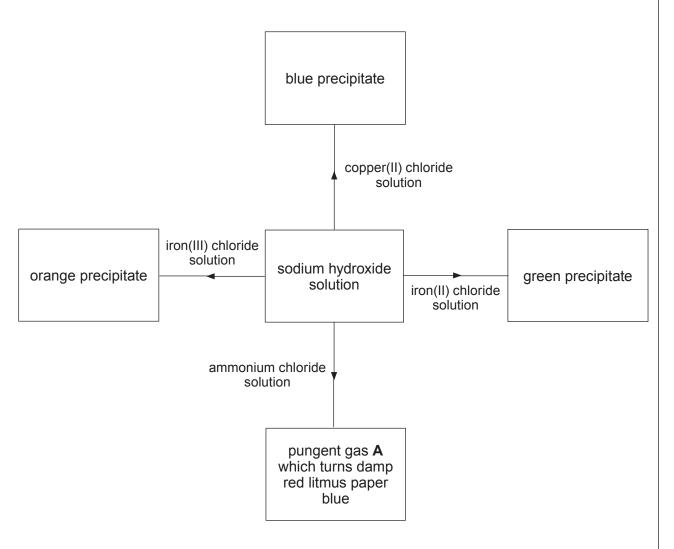
Concerns

Noise pollution from blasting

Unsightly quarry pits

Dust pollution from rock blasting

Noise and dust pollution from lorries


Habitat destruction

	noise pollution. Suggest two other things the quarry owner could do to reduce the impact of the quarry on the local environment.		
•••••			
(d)	Suggest two advantages of limestone quarrying. [2	2]	
	Advantage 1		
	Advantage 2		_

12

© WJEC CBAC Ltd. (4493-01) Turn over.

5. (a) A Year 11 pupil added sodium hydroxide to solutions of four compounds. The observations made by the pupil are shown below.

- (i) Name pungent gas A. [1]
- (ii) Give the chemical name of the blue precipitate formed. [1]

.....

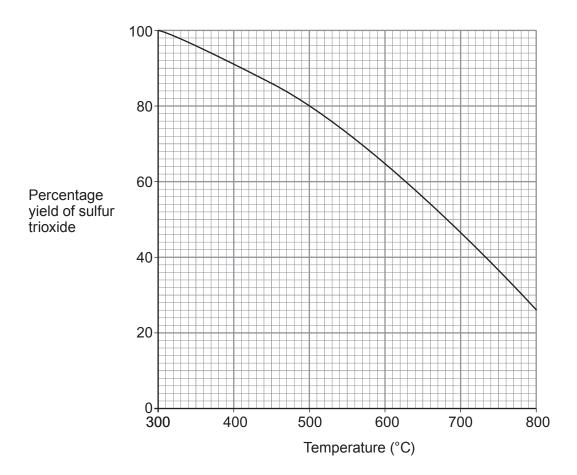
(iii) The green precipitate formed is iron(II) hydroxide. Give the chemical formula for this compound. [1]

.....

(b) The following table shows the colours of universal indicator at different pH values.

Colour	red	orange	yellow	green	blue	navy blue	purple
рН	0-2	3-4	5-6	7	8-9	10-12	13-14

(i)	Universal indicator turns red in sulfuric acid and orange in ethanoic acid. State what these results tell you about the relative strength of these acids.	[1]
(ii)	Both acids react with magnesium ribbon forming hydrogen gas.	
	State how the reactions would differ.	[1]
	II. Give the test you would carry out to identify hydrogen. Include the resu your test.	ılt of [1]


6

xaminer
only

- **6.** (a) One of the main stages in the manufacture of sulfuric acid is the reaction between sulfur dioxide and oxygen to form sulfur trioxide.
 - (i) Write the balanced **symbol** equation which represents this reaction. [3]

+

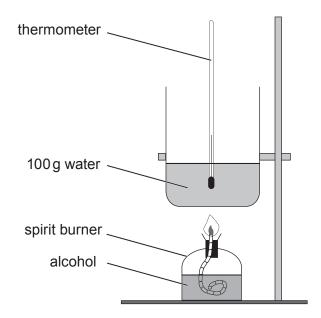
(ii) The graph below shows how the percentage yield of sulfur trioxide changes with temperature between 300 °C and 800 °C.

Use the graph to find the increase in percentage yield if the temperature is reduced from 650 °C to 450 °C. [2]

Increase in percentage yield = %

(iii) One molecule of sulfur trioxide reacts with one molecule of sulfuric acid to form one molecule of oleum as the **only** product.

Write a balanced **symbol** equation for this reaction. [2]


+

(b)	State what you would observe when a few drops of concentrated sulfuric acid are added to a beaker containing a small amount of sugar. Name the product left in the beaker. [3]	Examiner only
• • • • • • • • • • • • • • • • • • • •		
•••••		
•••••		
•••••		
		10

© WJEC CBAC Ltd. (4493-01) Turn over.

7. Methanol, ethanol, propanol and butanol belong to the alcohol family.

An experiment was carried out to discover which alcohol gives out the most energy when burned. The diagram below shows the apparatus used.

1g of each alcohol was used to heat 100g of water. The results are shown below.

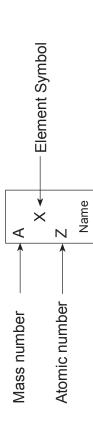
Alcohol	Initial temperature of water (°C)	Final temperature of water (°C)	Temperature change (°C)	Energy given out (J/g)
methanol	18	31	13	5460
ethanol	20	45	25	10 500
propanol	19	48	29	12 180
butanol	20	50	30	

	5						
ormula:	can be calculated using the	given out by each alcohol	The energy	(a)			
change	ter × 4.2 × temperatur	iven out = mass of wa	energy g				
[2]	ng 1g of butanol.	ne energy given out in burn	Calculate th				
<i>out</i> = J/g	Energy give						
ther step that should	nd 100g of water, give one	using 1g of each alcohol a	Apart from	(b)			
[1]	na roog er maner, groe eme	ensure a fair test.		-,			
re given in the table	given out by each alcohol	tical values for the energy		c)			
			below.				
	Theoretical value for energy given out (J/g)	Alcohol					
	22700	methanol					
	29700	ethanol					
	33600	propanol					
	36 100	butanol					
nain reason for the	retical values and give the	he experimental and theo	Compare th				
[3]		petween them.					
Some people are opposed to the large-scale use of bioethanol as a fuel. Describe briefly							
[2]		ne could take this view.	wily sollied				

Describe the benefits of the use of nitrogenous fertilisers and the problems that arise when they are washed into rivers. [6 QWC]	Exa o

END OF PAPER

6


(4493-01)

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIVE IONS				
Name	Formula	Name	Formula			
Aluminium	Al ³⁺	Bromide	Br ⁻			
Ammonium	NH_4^+	Carbonate	CO ₃ ²⁻			
Barium	Ba ²⁺	Chloride	CI ⁻			
Calcium	Ca ²⁺	Fluoride	F ⁻			
Copper(II)	Cu ²⁺	Hydroxide	OH ⁻			
Hydrogen	H ⁺	lodide	I ⁻			
lron(II)	Fe ²⁺	Nitrate	NO ₃			
lron(III)	Fe ³⁺	Oxide	O ²⁻			
Lithium	Li⁺	Sulfate	SO ₄ ²⁻			
Magnesium	Mg ²⁺					
Nickel	Ni ²⁺					
Potassium	K ⁺					
Silver	Ag^{+}					
Sodium	Na ⁺					
Zinc	Zn ²⁺					

PERIODIC TABLE OF ELEMENTS

0 2	⁴ He	Helium	¹⁹ F ²⁰ Ne ¹⁰		Fluorine Neon									
9			0 18 0 18	Oxygen Flu	_									
2			Z 2 7	Nitrogen O	_	31 P	<u>s</u>		+ + + + + + + + + + + + + + + + + + + +					
4			12 C	Carbon		28 Si	_	 	 					+ + + + + + + + + + + + + + + + + + + +
က			17 B 22	Boron		27 AI	_							
		-				l		65 Zn	85 Zn 30 Zinc	85 Zn 30 Zinc Zinc 48 Cd	65 Zn 30 Zinc 712 Cd 48 Cd Cadmium	85 Zn 30 Zinc Zinc 48 Cd 80 Hg	65 Zn 30 Zinc 712 Cd 48 Cd 80 Hg	85 Zn 30 Zinc Zinc Cadmium Cadmium Rercury
								64 Cu	64 Cu Copper	64 Cu Copper 108 Ag	64 Cu Copper 108 Ag Silver	64 Cu Copper 108 Ag 8 Silver 79 Au	64 Cu Copper 108 Ag Silver 79 Au 79 Au Gold	64 Cu Copper 47 Ag Silver 79 Au Gold
								28 N :	59 Ni 28 Ni Nickel	59 Ni 28 Ni Nickel 106 Pd	59 Ni 28 Ni Nickel 106 Pd 46 Pd	59 Ni 28 Ni Nickel 106 Pd 46 Pd Palladium	59 Ni 28 Nickel Nickel 106 Pd 46 Pd 78 Palladium 195 Pt 78 Platinum	59 Ni 28 Ni Nickel 46 Pd 46 Pd 195 Pt 78 Pt
	<u>T</u>	Hydrogen						59 Co	59 Co 27 Co Cobalt	59 Co 27 Co Cobalt 103 Rh	59 Co 27 Co Cobalt 103 Rh Rhodium	59 Co 27 Co Cobalt 103 Rh 45 Rh Rhodium	59 Co Cobalt 103 Rh Rhodium 192 Ir 77 Ir	59 Co Cobalt 103 Rh 45 Rhodium 192 lr 77 lr
dnc								56 Fe	56 Fe	⁵⁶ Fe ²⁶ Fe ¹⁰¹ Iron ⁴⁴ Ru	Se Fe 26 Fe Iron 101 Ru 44 Ru Ruthenium	190 Os	56 Fe 26 Fe 101 Ru 44 Ru Ruthenium 790 Osmium Osmium	101 Ruthenium Ruthenium Osmium Osmium
Gro								55 Mn	55 Mn Manganese	55 Mn Manganese				
								52 Cr	52 Cr 24 Cr Chromium	52 Cr 24 Cr Chromium 96 Mo	52 Cr 24 Cr Chromium 96 Mo 42 Mo	52 Cr 24 Cr Chromium 96 Mo 42 Mo Molybdenum 184 W	52 Cr Chromium 96 Mo 42 Mo Molybdenum 184 W 74 W	52 Cr Chromium 96 Mo 42 Mo 74 W 74 W Tungsten
								51 \	>	51 V 23 Vanadium 93 NB	51 V 23 Vanadium Vanadium 93 Nb 41 Nb	51 V 23 Vanadium 41 Nb Niobium 181 Ta	51 V 23 Vanadium 93 Nb 41 Nb Niobium 181 Ta 73 Ta	51 V 23 V Vanadium 93 Nb Niobium 181 Ta 73 Ta
								48 Ti	48 Ti 22 Ti Titanium	48 Ti 22 Ti Titanium 91 Zr	48 Ti 22 Ti Titanium 91 Zr 40 Zr Zirconium	48 Ti 22 Ti Titanium 91 Zr 40 Zr Zirconium	48 Ti 22 Ti Titanium 91 Zr 40 Zr Zirconium 179 Hf 72 Hf	48 Ti 22 Ti Titanium 40 Zr 2irconium 779 Hf 72 Hf
								45 SC	45 SC 21 Sc Scandium	21 Sc 21 Sc 39 Y	45 Sc 21 Scandium Scandium 89 Y 39 Y	21 Sc 21 Sc 39 Y 39 Y Yttrium 139 La	21 Sc 21 Scandium Scandium 89 Y 39 Y Yttrium 139 La 57 La	21 Scandium Scandium 89 Y 39 Y Yttrium 139 La 57 La Lanthanum
					г					_				
2			° Be	Lithium Beryllium		24 Mg	24 Mg 12 Mgnesiun	24 Mg Magnesiu	Sodium Magnesium Magnesium Magnesium Potassium Calciur					

© WJEC CBAC Ltd.

(4493-01)