Surname	Centre Number	Candidate Number
Other Names		0

GCSE

4462/02

SCIENCE A/CHEMISTRY

CHEMISTRY 1 HIGHER TIER

A.M. TUESDAY, 14 January 2014

1 hour

ADDITIONAL	MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correcting fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INIEODN	ΜΔΤΙΩΝ	$F \cap R \cap$	VIII	ATEC

The number of marks is given in brackets at the end of each question or part-question.

You are reminded that assessment will take into account the quality of written communication used in your answer to questions **4** and **9**.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

A						В
				С	D	
			E			
					F	
b) Give to prope	the letter of the electric the letters of the t rties. Give a reaso	t wo elements whi n for your choice.	ch you woul			[1] chemical
	Reason					[0]
(c) The ta	able below shows t		roperties	ts 1 , 2 and 3		
Element	Melting Point (°C)	Boiling Point (°C)	Appeara	ance M	alleable or b	rittle
1	1084	2927	shiny br		malleable	
2	1414	2900	shiny gre	y solid	brittle	
3	115	445	yellows	solid	brittle	
	giving reasons, w	hich of elements	1, 2 or 3 co	ould be elem	nent C in the	
	above.					[2]

© WJEC CBAC Ltd.

(4462-02)

4462 020003

PMT

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd. (4462-02) Turn over.

2. *(a)* Crude oil can be separated into simpler mixtures, called fractions, which contain hydrocarbon compounds with boiling points within a similar range.

The graph below shows the boiling points of hydrocarbons containing 1 to 12 carbon atoms.

(i) Give the number of carbon atoms in the hydrocarbon which has the **lowest** boiling point. [1]

(ii) State how the boiling point changes as the number of carbon atoms increases. [1]

(iii) A company wants to produce a fraction with a boiling point in the range 120–140 °C.

Give the number of carbon atoms present in the hydrocarbons found in this fraction.

(b) Plastic has replaced glass for making some drink bottles.
 Apart from cost, give one property of plastic that makes it a more suitable material for making drink bottles.

[2]

(c) The graph below shows the number of plastic drink bottles sold and recycled in the United States between 1996 and 2008.

Calculate the percentage (%) of plastic bottles sold in 2008 that were recycled.

Percentage recycled = %

(d) State and exp	lain the advantages of recycling plastic.	[3]

PMT

(b) Balance the **symbol** equation for the reaction between zinc and dilute hydrochloric acid. [1]

$$Zn + HCI \longrightarrow ZnCl_2 + H_2$$

4

•	All water supplies in the UK are chlorinated but only some are fluoridated.
	State why each process is carried out and outline why some people are opposed to the luoridation of drinking water but no one opposes chlorination. [6 QWC]

© WJEC CBAC Ltd.

PMT

The electrode equations below show how the products are formed.

$$2O^{2-}$$
 - 4e \longrightarrow O_2

(i) Choose from the equations above

an ion,

an atom,

a molecule.

[2]

(ii) At which electrode is aluminium formed? Give the reason for your answer. [2]

(iii) Use the information in the diagram above to give the chemical name and formula of alumina. [2]

Chemical name

Formula

(iv) State **one** environmental problem associated with the **electrolysis** of molten alumina. [1]

(b) Aluminium is a good electrical conductor and is therefore used to make overhead power cables.

Give a **different** property of aluminium and **one** use which relies on this property. [1]

(4462-02)

6. (a) The graph below shows the total sulfur dioxide emissions in the UK between 1970 and 2012.

(i) Use the graph to calculate the decrease in sulfur dioxide emissions in **tonnes** between 1994 and 2004. [1]

Decrease in sulfur dioxide emissions =tonnes

(ii) Suggest and explain a possible reason for the trend shown in the graph. [2]

(iii) Balance the symbol equation below which shows a reaction that can lead to the formation of sulfuric acid in the atmosphere. [1]

$$SO_2 + H_2O + O_2 \longrightarrow H_2SO_4$$

Examiner

(b) A group of pupils investigated the pH change which occurs when limestone reacts with acid rain. The group collected rain water during a rain shower.

They used the apparatus shown below.

They added limestone pieces to the rain water and recorded the pH of the mixture for 5 minutes. The data collected was then downloaded to a computer.

datalogger

The graph below shows the results recorded.

(i) Name the type of reaction taking place. [1]

(ii) Limestone affects the acidity of acid rain. Describe how the graph supports this statement. [2]

(iii) Apart from destroying limestone buildings and statues, give **one** *other* problem associated with acid rain. [1]

Satel	lite images are used to show the area of Arctic sea ice.
Arc	Arctic sea ice 2012 Photograph: National Snow and Ice Data Centre, Colorado.
(-\	
(a) 	The shrinking of the ice cap is interpreted by environmental groups as the result of global warming. State and explain the main cause of global warming. [2]
(a) (b) (c)	warming. State and explain the main cause of global warming. [2]
(b)	Give one consequence of the reduction of Arctic sea ice. [1] Scientists are currently developing a process called <i>carbon capture and storage (CCS)</i> to reduce the problem of global warming. There are three main steps to CCS. Firstly, carbon dioxide is trapped and separated from other gases produced in coal-powered electricity plants. The captured carbon dioxide is transported to a storage location and

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

8. A pupil used the apparatus below to carry out an investigation to find the temperature change which occurs when dilute hydrochloric acid reacts with dilute sodium hydroxide solution.

The pupil measured 50 cm³ of sodium hydroxide solution, using a measuring cylinder, into a polystyrene cup. He then added 80 cm³ of acid, 10 cm³ at a time, and recorded the highest temperature each time. The experiment was repeated.

50 cm³ sodium hydroxide solution

Volume of acid		Temperature (°C)				
added (cm ³)	Experiment 1	Experiment 2	Mean			
0	21.0	21.0	21.0			
10	22.1	23.5	22.8			
20	24.9	23.5	24.2			
30	28.0	22.8	25.4			
40	26.0	26.8	26.4			
50	27.4	26.6	27.0			
60	26.6	26.8	26.7			
70	26.2	26.2	26.2			
80	25.5	25.7	25.6			

(a)	From the data in the table, state the volume of acid where the temperature	readings
	appear to be incorrect. Give the reason for your choice.	[2]

(b) On the grid opposite plot the volume of acid against the **mean** temperature and draw a suitable line. [3]

perature (°C	·)						
10	20	30	40	50	60	70	80
		Volu	me of acid	cm ³)			
Using your	graph state	why the inc	orrect temp	erature read	inas identifi	ed in nart <i>(a</i>	a) miaht
not have be	een noticed	by the pupil.	orreot temp	orataro road	ingo identin	oa iii pai t (c	7) 111.grit [1]
	•••••		•••••				······································
Describe a	nd explain t	he shape of	the graph	n relation to	the chemi	cal reaction	n taking
Describe a							
place.	•						[3]
	Using your	Using your graph, state	Volu Using your graph, state why the inc	Volume of acid (Volume of acid (cm ³) Using your graph, state why the incorrect temperature read	Volume of acid (cm ³) Using your graph, state why the incorrect temperature readings identifi	Volume of acid (cm ³) Using your graph, state why the incorrect temperature readings identified in part (a)

Turn over.

Many car companies are manufactoribe and explain the advant petrol and diesel to fuel cars.	cturing hydrogen-fuelled cars. tages and disadvantages of hydrogen a	s a replacement for [6 QWC]
	END OF PAPER	

© WJEC CBAC Ltd.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

FORMULAE FOR SOME COMMON IONS

POSITIV	E IONS	NEGATIVE IONS			
Name	Formula	Name	Formula		
Aluminium	Al ³⁺	Bromide	Br ⁻		
Ammonium	NH_4^+	Carbonate	CO ₃ ²⁻		
Barium	Ba ²⁺	Chloride	CI-		
Calcium	Ca ²⁺	Fluoride	F ⁻		
Copper(II)	Cu ²⁺	Hydroxide	OH ⁻		
Hydrogen	H⁺	lodide	ı ⁻		
Iron(II)	Fe ²⁺	Nitrate	NO ₃		
Iron(III)	Fe ³⁺	Oxide	O^{2-}		
Lithium	Li⁺	Sulfate	SO ₄ ²⁻		
Magnesium	Mg ²⁺				
Nickel	Ni ²⁺				
Potassium	K ⁺				
Silver	Ag^{+}				
Sodium	Na⁺				
Zinc	Zn ²⁺				

PERIODIC TABLE OF ELEMENTS

0	⁴ ₂ He	Helium
_		
9		
2		
4		
က		
Group	I	Hydrogen
7		

					20				
²⁰ Ne	Neon	40 Ar	Argon	84 Kr 36	Krypton	¹³¹ Xe	Xenon	²²² Rn	Radon
19 円	Fluorine	35 CI	Chlorine	80 Br	Bromine	127 53	lodine	²¹⁰ At 85	Astatine
16 O	Oxygen	32 S	Sulfur	⁷⁹ ₃₄ Se	Selenium	128 Te	Tellurium	²¹⁰ ₈₄ Po	Polonium
N 41 7	Nitrogen	31 P	Phosphorus	75 AS	Arsenic	122 Sb	Antimony	²⁰⁹ Bi	Bismuth
12 C	Carbon	28 Si	Silicon	73 Ge	Germanium	119 Sn	Tin	²⁰⁷ Pb	Lead
11 B	Boron	27 AI	Aluminium	°20 Ga	Gallium	¹¹⁵ In	Indium	204 ∏ 81	Thallium
				uZ ⁰⁸	Zinc	112 48 Cd	Cadmium	201 Hg	Mercury
				64 Cu	Copper	108 47 47	Silver	197 79 Au	Gold
				59 N i	Nickel	106 Pd	Palladium	195 Pt	Platinum
				59 Co	Cobalt	103 Rh	Rhodium	192 L	lridium
				⁵⁶ Fe 26	Iron	¹⁰¹ Ru	Ruthenium	30 ₉₇	Osmium

Key:

Rhenium

Tungsten

Tantalum

Hafnium

Lanthanum

Barium

Caesium

²²⁷₈₉ Ac

226 **Ra** 88

²²³ Fr

Actinium

Radium

Francium

¹⁸⁶ Re

184 W

¹⁸¹ **Ta**

179 **Hf**

¹³⁹ La

137 **Ba** 56

133 **Cs** 55 **Cs**

Beryllium

Lithium

⁹Be

⁷Li

24 Mg

23 **Na**

Manganese

Chromium

Titanium Vanadium

Calcium Scandium

Potassium

99 Tc

96 Mo

93 Nb

 $^{91}_{40}Z_{\Gamma}$

89 **∀**

88 38 **S C**

 $^{86}_{37}$ Rb

55 Mn

52 Cr

 $\frac{51}{23}$

48 22

45 Sc

⁴⁰ Ca

39 19 **X**

Sodium Magnesium

Technetium

Molybdenum

Niobium

Zirconium

Yttrium

Strontium

Rubidium