Surname	Centre Number	Candidate Number
Other Names		0

GCSE - NEW

C410U10-1

CHEMISTRY – Component 1:

Concepts in Chemistry

FOUNDATION TIER

THURSDAY, 17 MAY 2018 - MORNING

2 hours 15 minutes

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	8		
2.	12		
3.	12		
4.	12		
5.	8		
6.	14		
7.	6		
8.	12		
9.	6		
10.	10		
11.	10		
12.	10		
Total	120		

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

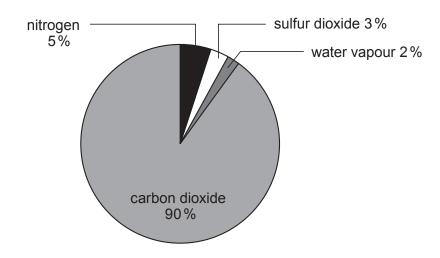
Answer all questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

Question **6**(c) is a quality of extended response (QER) question where your writing skills will be assessed.


The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.

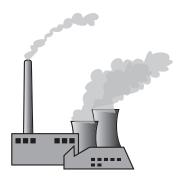
Answer all questions.

1. (a) Draw a line to match each gas to its percentage in the atmosphere. [2]

GasPercentage in the atmosphereoxygen78 %nitrogen21 %carbon dioxide0.9 %argon0.04 %

(b) The pie chart shows the approximate percentage of gases in the atmosphere that existed **before** green plants evolved on Earth.

Put a tick (\mathcal{I}) next to the statement which describes how green plants affected the amounts of carbon dioxide and oxygen in the atmosphere. [1]


carbon dioxide increased and oxygen decreased	
both carbon dioxide and oxygen increased	
carbon dioxide decreased and oxygen increased	

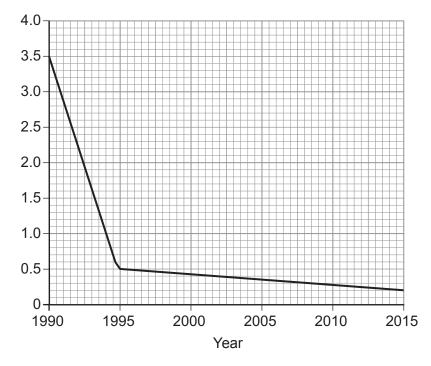
© WJEC CBAC Ltd.

(C410U10-1)

only

Coal contains sulfur impurities. Burning coal in power stations is a major source of acid rain.

Describe the **two** steps that lead to acid rain being formed from coal. Give **one** problem which is caused by acid rain. [3]


Step 1	
Step 2	
 Problem	

Turn over.

(d) The graph shows the amount of sulfur dioxide released into the atmosphere each year between 1990 and 2015.

Examiner only

Amount of sulfur dioxide released (millions of tonnes)

What does this graph show? Put ticks (/) in the boxes next to the **two** correct statements.

[2]

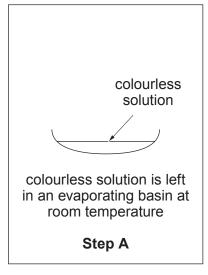
the amount of sulfur dioxide released has decreased steadily over 25 years

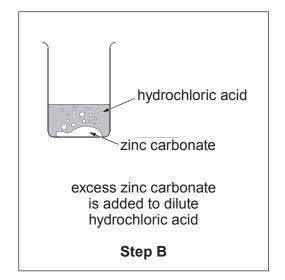
since 1995 there has been a small decrease in the amount of sulfur dioxide released

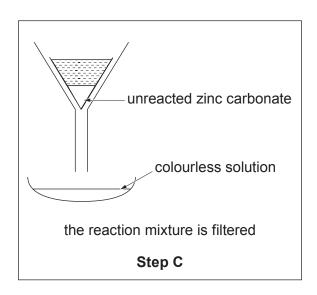
there has been no decrease in the amount of sulfur dioxide released over the last 25 years

the amount of sulfur dioxide released decreased rapidly between 1990 and 1995

8

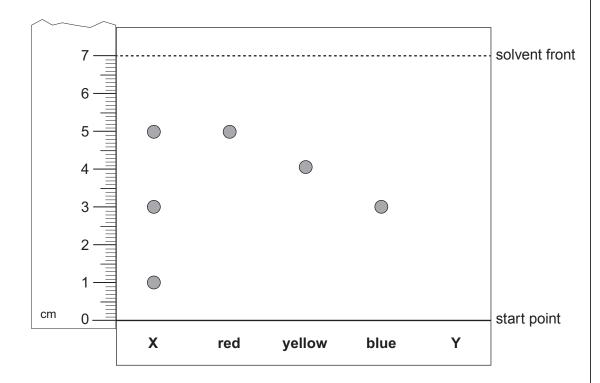

BLANK PAGE


© WJEC CBAC Ltd. (C410U10-1) Turn over.


2. (a) The diagrams below show the three steps needed to prepare a sample of zinc chloride in the laboratory.

The steps are **not** in the correct order.

zinc carbonate + hydrochloric acid → zinc chloride + water + carbon dioxide



0	
\supset	
410	
ŏ	ŗ

	(i)	Com	plete the table.	
		- 1	Put steps A , B and C in the order they are carried out.	2]
		П	Describe the purpose of each step.	3]
Step	Le	tter	Purpose	
First step				
Second step				
Last step				
	(ii)	Put a	znCl	1]
	(iii)	Give make	the name of another substance which reacts with dilute hydrochloric acid to zinc chloride.	to 1]

(b) Food colourings often contain more than one dye mixed together to give the required colour. Food scientists use chromatography to separate the dyes in food colourings.

The diagram shows a paper chromatogram used to investigate an unknown food colouring, **X**, and three known dyes.

- (i) How many dyes does **X** contain?[1]
- (ii) Which of the known dyes are present in **X**? [1]
- (iii) The $R_{\rm f}$ value of a substance can be used to identify that substance.

The R_f value is given by the formula:

 $R_{\rm f} = \frac{\text{distance moved by the substance}}{\text{distance moved by the solvent front}}$

Calculate the $R_{\rm f}$ value of the blue dye.

[2]

(iv) Another unknown food colouring, **Y**, contains the red and yellow dyes. **On the diagram**, draw the chromatogram for **Y**.

[1]

12

3. (a) Different iron ores contain different amounts of iron. A scientist tests four iron ores, **A**, **B**, **C** and **D**, to find out how much iron they might expect to extract from each ore.

iron waste

iron ore

The table shows the scientist's results.

Ore	Mass of ore tested (g)	Mass of iron extracted from the ore (g)	Mass of iron extracted per gram of ore (g)	Mass of iron extracted per kilogram of ore (g)
Α	100	7	0.07	70
В	100	4	0.04	40
С	100	12	0.12	120
D	100	10		

(i) Complete the table.

[2]

(ii) Give the letter of the ore which produces the least amount of waste. Explain your choice.[2]

(iii) When 500 tonnes of ore **A** are used in the blast furnace the predicted yield is 35 tonnes. In practice the actual yield is 29 tonnes.

Use the following equation to calculate the percentage yield. Give your answer to **two** significant figures. [2]

percentage yield =
$$\frac{\text{actual yield}}{\text{predicted yield}} \times 100$$

Percentage yield =%

C410

© WJEC CBAC Ltd. (C410U10-1) Turn over.

(b) A student investigated the rusting of iron. The table shows the apparatus used and the observations made.

Test tube 1	Test tube 2
distilled water	boiled water
water and air present	water only present
nail is rusty after 2 weeks	nail still shiny after 2 weeks

Test tube 3	Test tube 4
drying agent	salt water
air only present	water, air and salt present
nail still shiny after 2 weeks	nail is rusty after 2 days

What conclusions can be drawn from these observations?			

© WJEC CBAC Ltd.

The photographs show two methods of preventing ships from rusting.

PMT

Painting

(c)

Sacrificial protection

www.chem.info

www.tis-gdv.de

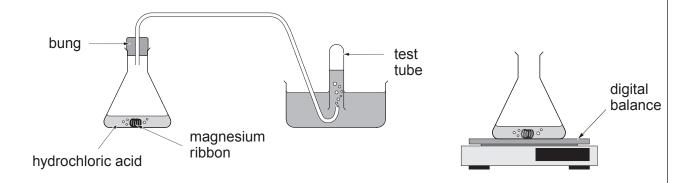
	Explain how each method protects iron from rusting.	[3]		eting. [3]	
(d)	When iron rusts it reacts with oxygen to form iron(III) oxide. Iron(III) oxide contains the ions Fe^{3+} and O^{2-} .	ie			
	Write the chemical formula for iron(III) oxide.	1]			
		1.7	ı		

12

C410U101

© WJEC CBAC Ltd. (C410U10-1) Turn over.

Exai	mi	ner	
OI	ηly	,	


4. An experiment was carried out to investigate the rate of the reaction between magnesium ribbon and dilute hydrochloric acid.

magnesium + hydrochloric acid
→ magnesium chloride + hydrogen

The volume of hydrogen formed every 10 seconds was recorded.

Α

(a) Give the **letter** of the apparatus which would be used to **accurately** record the **volume** of hydrogen formed. Give a reason for your choice. [2]

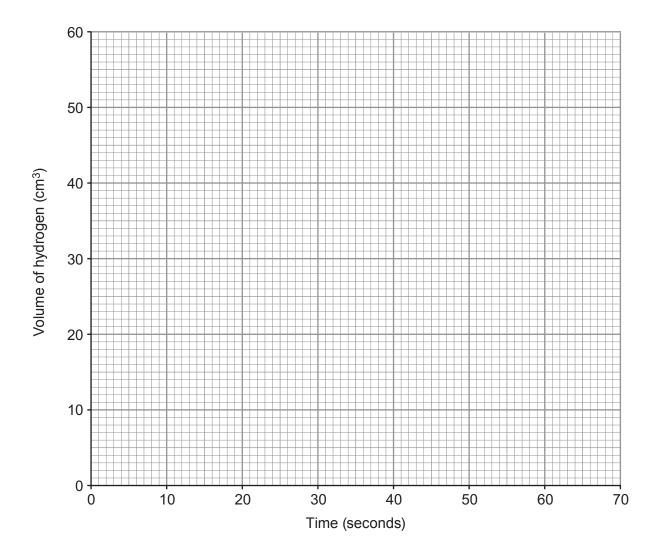
measuring cylinder

В

Letter

Reason

C


.....

Examiner only

(b) The table shows the volume of hydrogen formed during the reaction between magnesium ribbon and excess dilute hydrochloric acid at $20\,^{\circ}$ C.

Time (seconds)	0	10	20	30	40	50	60	70
Volume of hydrogen (cm ³)	0	16	30	42	52	55	55	55

(i) Plot the results on the grid and draw a suitable line. [3]

(ii) Use the graph to find the volume of hydrogen formed after 25 seconds.

..... cm³

Use the graph to find the time taken to form 5 cm³ of hydrogen. [1]

..... S

Turn over.

(c)	The rate of this reaction can be changed by replacing the magnesium ribbon with powdered magnesium.	Examiner only
	State and explain, in terms of the particle model, how this change affects the rate. [3]	
(d)	The same reaction was repeated and a balloon used to collect all the gas given off. The apparatus was set up as shown below. The mass was recorded at the start and again after 1 minute.	
	hydrogen	
magne ribbon		
	After 1 minute	
	Put a tick (✓) in the box next to the statement which gives the total mass after 1 minute.	
	< 94.60 g	
	= 94.60 g	
	> 94.60 g	
	= 47.30 g	
	Give a reason for your choice. [2]	
		12

5. The structural formulae of five carbon compounds are shown.

ethane

ethanoic acid

methanol

Use only these compounds in your answers to parts (a)-(d).

(a) Give the **names** of the two hydrocarbons. Give the reason for your choice. [2]

Names and

Reason

(b) Give the **names** of the two compounds which belong to the same homologous series. Name the homologous series. [2]

Names and

Homologous series

(c) Give the **name** of the compound which reacts with oxygen to form ethanoic acid. [1]

Name

(d)	Give the name of the compound used to make polythene. Explain how polythene is formed. [3]	only
	Name	
	Explanation	
•••••		
•••••		
		8

© WJEC CBAC Ltd. (C410U10-1)

- **6.** (a) A group of students used simple chemical tests to identify unknown substances.
 - (i) Samantha tested three colourless gases **A**, **B** and **C**.

She was told that the gases were three of the following.

П					
	ammonia	carbon dioxide	chlorine	hydrogen	oxygen

The table shows her results.

Took	Observations			
Test	Gas A	Gas B	Gas C	
Damp red litmus paper	no change	bleached white	turns blue	
Using a pipette, bubble some of the gas into limewater	turns milky	no change	no change	
Damp blue litmus paper	turns red	turns red, and then bleached white	no change	

Name the three gases.	
A	
В	
C	

[3]

(ii) Jack was given three solutions **D**, **E** and **F** in unlabelled bottles.

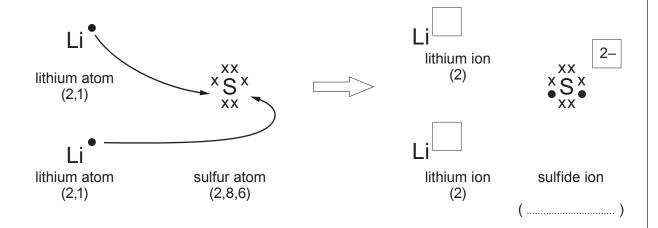
He was told the solutions were either **metal carbonates** or **metal halides**.

The table shows his results.

Toot	Observations			
Test	Compound D	Compound E	Compound F	
Flame test	yellow	lilac	brick-red	
Add silver nitrate solution	white precipitate	no reaction	yellow precipitate	
Add dilute hydrochloric acid	no reaction	fizzes	no reaction	

	Name the three compounds.	[3
	D	
	E	
	F	
(b)	Barium chloride solution is used to test for sulfate ions. When barium chloride solutio added to sodium sulfate solution a white precipitate is formed.	n is
	barium chloride + sodium sulfate → sodium chloride + barium sulfate	
	Complete and balance the symbol equation for this reaction.	[2]
	BaCl ₂ + Na ₂ SO ₄ → + +	

Examir	ner
only	


(c) Emily carried out a series of experiments to find the relative positions of copper, magnesium and zinc in the reactivity series. Each metal was added to separate solutions of the other two metals. The table shows her results.

Metal	Metal sulfate solution			
Ivietai	copper(II) sulfate	magnesium sulfate	zinc sulfate	
copper		no reaction	no reaction	
magnesium	brown solid forms and blue solution turns colourless		silvery-grey solid forms	
zinc	brown solid forms and blue solution turns colourless	no reaction		

Use the information in the table to place these metals in order of reactivity. Ex reasoning and include equations to show the type of reaction taking place.	(plain your [6 QER]
	······································

7. (a) The diagrams show the electronic changes that occur when lithium reacts with sulfur to form lithium sulfide.

The • and x symbols are **outer** shell electrons.

- (i) **Complete the diagram** by putting in the charge on each lithium ion and the electronic structure of the sulfide ion. [2]
- (ii) <u>Underline</u> the name of the force holding the ions together in lithium sulfide. [1]

gravity electrostatic magnetic friction

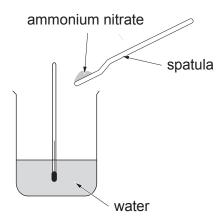
(iii) Write the chemical formula of lithium sulfide. [1]

.....

(b) The table shows the electronic structures of the elements present in hydrogen sulfide.

Element	Electronic structure
hydrogen	1
sulfur	2,8,6

(i) Use this information to choose the diagram **A-D** which shows the bonding in a hydrogen sulfide molecule. [1]


H ^x S ^x H	H * S * H	$H_{\bullet xx}^{xx} H_{xx}^{xx}$	H × S × H
Α	В	С	D
Letter			

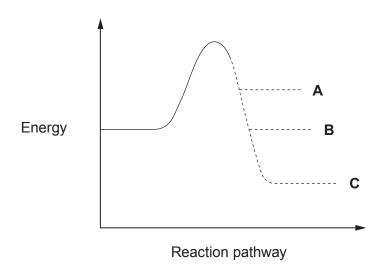
(ii) Name the type of bonding found in hydrogen sulfide.

[1]

6

8. (a) A teacher demonstrated an experiment to show the temperature change when ammonium nitrate dissolves in water.

Different amounts of ammonium nitrate were added separately to $100\,\mathrm{cm^3}$ of water. The results are shown in the table.


Spatulas of ammonium nitrate	Initial temperature (°C)	Final temperature (°C)
1	21	19
2	21	16
4	21	9

(i)	What conclusions can be drawn from the results?	[2]

© WJEC CBAC Ltd.

(ii) An energy profile diagram can be drawn for the dissolving of ammonium nitrate in water.

Examiner only

Give the **letter** which shows the energy of the product.

[1]

Letter

(iii) The teacher repeated the experiment using accurate masses of ammonium nitrate.

Give the name of the apparatus used to measure mass. [1]

.....

- (b) Ammonium nitrate and potassium nitrate are two important chemicals used in NPK fertilisers.
 - (i) Calculate the relative formula mass (M_r) of ammonium nitrate, NH_4NO_3 [2]

$$A_{r}(H) = 1$$
 $A_{r}(N) = 14$ $A_{r}(O) = 16$

(ii) Calculate the percentage by mass of nitrogen in ammonium nitrate. [2]

Еха	mi	ner
0	nlν	,

(c) The atom economy of a reaction is an important factor when planning an industrial process.

One method of manufacturing potassium nitrate is by reacting potassium hydroxide with nitric acid.

$$\mathsf{KOH} \; + \; \mathsf{HNO}_3 \; \longrightarrow \; \mathsf{KNO}_3 \; + \; \mathsf{H}_2\mathsf{O}$$

The tables show the relative formula masses (M_r) of the reactants and products of the reaction.

Reactants	M _r
potassium hydroxide	56
nitric acid	63

Products	M _r
potassium nitrate	101
water	18

The atom economy for a reaction can be calculated using the following formula.

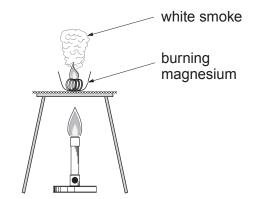
atom economy =
$$\frac{\text{mass of atoms in desired product}}{\text{mass of atoms in reactants}} \times 100$$

(i)	Calculate the atom economy for the production of potassium nitrate. Give	your
	answer to an appropriate number of significant figures.	[2]

(ii) Put a tick (✓) next to **two** statements which describe the advantages of a reaction with a high atom economy. [2]

uses less natural resources	
forms more waste	
only uses renewable natural resources	
forms less waste	
forms biodegradable waste	

12


Еха	m	in	eı
0	nl	v	

9. Four students investigated the burning of magnesium in air.

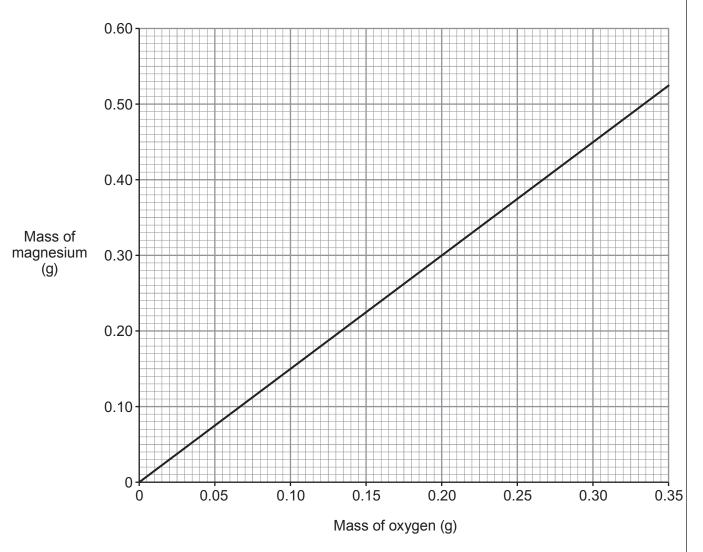
They wanted to show that 0.24 g of magnesium always joins with the same mass of oxygen. Each student followed the same method.

Method

- 1. Weigh a crucible.
- 2. Weigh the crucible and 0.24 g of magnesium ribbon
- 3. Heat the magnesium until the reaction stops.
- 4. Allow the apparatus to cool.
- 5. Weigh the crucible and magnesium oxide.
- 6. Calculate the mass of oxygen gained.

The table shows the mass of oxygen gained in each student's experiment.

Student	1	2	3	4
Mass of oxygen gained (g)	0.11	0.05	0.07	0.09


(a)	(i)	Use all four of the students results to calculate the mean mass of oxygen	which
		reacts with 0.24 g of magnesium.	[2]

Mean mass of oxygen =g

(ii) 0.24 g of magnesium should join with 0.16 g of oxygen.

Suggest **one** reason why the results obtained by all the students were lower than 0.16 g. [1]

(b) The graph shows the relationship between the mass of magnesium and the mass of oxygen present in magnesium oxide.

(i) Calculate the gradient of the line. You **must** show your working. [2]

Gradient of line =

(ii) Use the graph to predict the mass of oxygen that reacts with 0.6 g of magnesium. [1]

Mass of oxygen =g

6

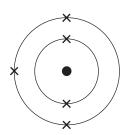
10. (a) The table shows some information about particles found in atoms. Complete the table. [2]

Particle	Relative mass	Relative charge
proton		+1
electron	negligible	
neutron	1	0

(b) Complete the following table that shows information about atoms of some elements. [3]

Element	Mass number	Atomic number	Number of protons	Number of neutrons	Number of electrons
fluorine	19	9	9	10	
potassium	39	19		20	19
argon		18	18	22	18

(c) The following diagram shows an outline of part of the Periodic Table.


The letters shown are NOT the chemical symbols of the elements.

						A				
В							С	D		
E										
			•	•						

(i)	Give the letter of the element in Group 2 and Period 3.	[1]

(ii)	Give the letter of the element which has 14 protons in its nucleus.	[1]

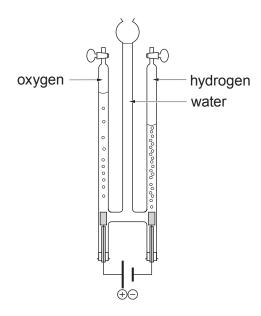
(d) The diagram shows the electronic structure of an element in the Periodic Table.

Draw the diagram which shows the electronic structure of the element which lies directly **below** it. [1]

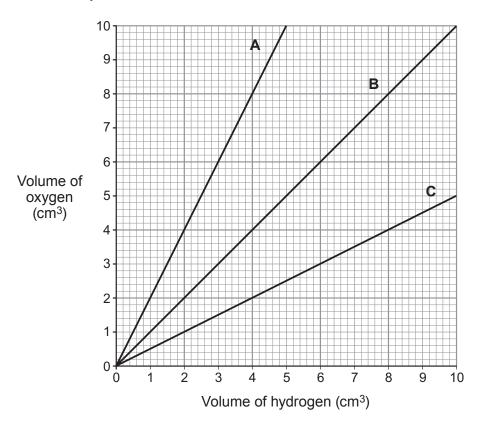
(e) The definition of an element is:

"a substance that cannot be broken down into simpler substances by chemical methods".

In the 1700s a chemist named Antoine Lavoisier attempted to arrange substances in a pattern. The table shows some of the 'substances' which Lavoisier thought were elements. He divided the 'substances' into four groups. He published these groups in 1789. The modern names of some of the 'substances' are given in brackets.


Acid-making elements	Gas-like elements	Metallic elements	Earthy elements
sulfur	light	mercury	lime (calcium oxide)
phosphorus	caloric (heat)	copper	magnesia
charcoal (carbon)	oxygen	nickel	(magnesium oxide)
	azote	gold	barites (barium sulfate)
	(nitrogen)	iron	silex
	hydrogen	zinc	(silicon dioxide)

(i)	Name one 'substance' in the table which is not a chemical element or compour	าd. [1]
(ii)	The 'earthy elements' are now known as compounds. Suggest why Lavois	sier
()	thought they were elements.	[1]


10

© WJEC CBAC Ltd. (C410U10-1) Turn over.

11. (a) The following apparatus is used to show the electrolysis of water.

(i) Choose the **letter** of the graph which shows the relationship between the volume of hydrogen and the volume of oxygen formed during the process. Give the reason for your choice. [2]

Letter

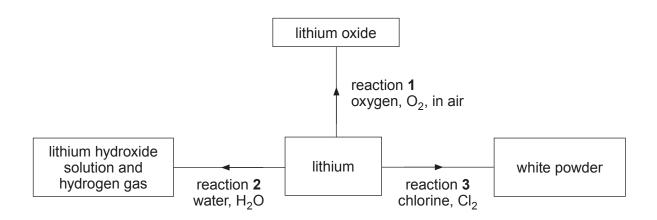
Reason

© WJEC CBAC Ltd.

(C410U10-1)

(ii)	Explain the m	ovement o	f H+ ic	ons and OH ⁻ ion	s during	the process.	[2]	Examiner only
(iii)	Complete the formed.	equation	by d	rawing diagram	s to rep	resent all the	molecules [2]	
	water		→	hydrogen	+	oxygen		
			→		+			

(b) The table below shows the symbols of the ions present in three electrolytes and the products formed during their electrolysis. **Complete the table.** [4]


	Symbol of ions pro	esent in electrolyte	Name of product formed		
Electrolyte	Positive ion(s)	Negative ion(s)	At the cathode (-)	At the anode (+)	
molten lead(II) iodide			lead	iodine	
aqueous copper(II) sulfate	Cu ²⁺ H ⁺	SO ₄ ²⁻ OH ⁻		oxygen	
aqueous lithium chloride	Li ⁺ H ⁺	CI ⁻ OH ⁻	hydrogen		

10

© WJEC CBAC Ltd. (C410U10-1) Turn over.

PMT

12. (a) The diagram shows three reactions of lithium.

(i) I Balance the symbol equation for reaction 1. [1]

II Calculate the relative formula mass (M_r) of lithium oxide. [1]

$$A_{r}(Li) = 7$$
 $A_{r}(O) = 16$

*M*_r =

III Describe how reaction **1** is prevented from happening when storing lithium in the laboratory. [1]

	(ii)	ı	Complete and balance the symbol equation for reaction 2.	[2]	Examiner only
			2Li + 2H ₂ O +		
		II	Explain the colour seen when a few drops of universal indicator are added the solution formed in reaction 2 .	d to [2]	
	(iii)	Write	e a balanced symbol equation for reaction 3 .	[2]	
(b)	Give	the cl	nemical formula of lithium carbonate.	[1]	
					10

END OF PAPER

For continuation only.	Examiner only

FORMULAE FOR SOME COMMON IONS

POSITIVE	EIONS	NEGATI	VE IONS
Name	Formula	Name	Formula
aluminium	Al ³⁺	bromide	Br ⁻
ammonium	NH_4^+	carbonate	CO ₃ ²⁻
barium	Ba ²⁺	chloride	CI ⁻
calcium	Ca ²⁺	fluoride	F ⁻
copper(II)	Cu ²⁺	hydroxide	OH ⁻
hydrogen	H⁺	iodide	I ⁻
iron(II)	Fe ²⁺	nitrate	NO ₃
iron(III)	Fe ³⁺	oxide	O ²⁻
lithium	Li ⁺	sulfate	SO ₄ ²⁻
magnesium	Mg ²⁺ Ni ²⁺		•
nickel	Ni ²⁺		
potassium	K ⁺		
silver	Ag^{+}		
sodium	Na⁺		
zinc	Zn ²⁺		

84 **Kr** Krypton 36

40 Ar Argon

Neon

222 **Rn** Radon 86

131 Xenon 54

THE PERIODIC TABLE

Group

Helium 2

9
2
4
က

								_						
	6 Т	Fluorine 9	35.5	$\overline{\mathbf{c}}$	Chlorine 17	80	Ŗ	Bromine 35	127	_	lodine 53	210	¥	Astatine 85
	9 ¹ O	Oxygen 8	32	တ	Sulfur 16	79	Se	Selenium 34	128	<u>e</u>	Tellurium 52	210	Ъ	Polonium 84
	⁺ Z	Nitrogen 7	33	ഫ	Phosphorus 15	75	As	Arsenic 33	122	Sp	Antimony 51	209	<u></u>	Bismuth 83
	12 C	Carbon 6	28	<u>.</u>	Silicon 14	73	Ge	Germanium 32	119	Sn	Tin 50	207	Ъ	Lead 82
	11 B	Boron 5	27	₹	Aluminium 13	20	Ga	Gallium 31	115	므	Indium 49	204	F	Thallium 81
						65	Zu	Zinc 30	112	р О	Cadmium 48	201	Нg	Mercury 80
						63.5	Cn	Copper 29	108	Ag	Silver 47	197	Αn	Gold 79
						29	Ē	Nickel 28	106	Pd	Palladium 46	195	₹	Platinum 78
						29	ပိ	Cobalt 27	103	몬	Rhodium 45	192	<u>_</u>	Iridium 77
]										Ruthenium 44			
1 Hydrogen						55	Mn	Manganese 25	66	ပ	Technetium 43	186	Re	Rhenium 75

Key

Tungsten 74

Tantalum 73

Hafnium 72

Lanthanum 57

Barium 56

227 Ac

226 **Ra** Radium 88

223 Fr Francium 87

₹ ≥

179 **H**

139 **La**

137 **Ba**

133 Cs Caesium 55

Molybdenum 42

96 **Mo**

93 **Nb** Niobium 41

91 Zr Zirconium 40

88 **>**

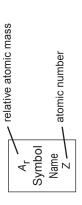
Yttrium 39

88 Sr Strontium 38

86 **Rb** Rubidium 37

Chromium

Vanadium 23


Titanium 22

Scandium 21

Calcium 20

Magnesium 12

24

2

Na Sodium © WJEC CBAC Ltd.

9 **Be** Beryllium

39 K (C410U10-1)