| Surname | Other | names | | | | | | |-------------------------|---------------|------------------|--|--|--|--|--| | Pearson<br>Edexcel GCSE | Centre Number | Candidate Number | | | | | | | Chemistry | | | | | | | | | Unit C3: Chemistry | vin Action | | | | | | | | onit co. chemistry | y iii Action | | | | | | | | Offices. Chemistry | | Foundation Tier | | | | | | | Wednesday 22 June 2016 | ı | Paper Reference | | | | | | | | ı | | | | | | | ### **Instructions** - Use **black** ink or ball-point pen. - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions. - Answer the questions in the spaces provided - there may be more space than you need. ### **Information** - The total mark for this paper is 60. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - Questions labelled with an asterisk (\*) are ones where the quality of your written communication will be assessed - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions. ### **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ PEARSON DO NOT WRITE IN THIS AREA # The Periodic Table of the Elements | 0 <b>He</b> helium 2 | 20<br>Ne neon | 40<br><b>Ar</b><br>argon<br>18 | 84<br><b>Kr</b><br>krypton<br>36 | 131<br><b>Xe</b><br>xenon<br>54 | [222]<br><b>Rn</b><br>radon<br>86 | fully | |----------------------|-------------------------------------------------------------------------|-------------------------------------|-----------------------------------|-------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------| | 7 | 19<br><b>FI</b><br>fluorine<br>9 | 35.5<br><b>CI</b><br>chlorine<br>17 | 80<br><b>Br</b><br>bromine<br>35 | 127<br> | [210] At astatine 85 | orted but not | | 9 | 16<br>O<br>oxygen<br>8 | 32<br><b>S</b><br>sulfur<br>16 | 79<br><b>Se</b><br>selenium<br>34 | 128<br><b>Te</b><br>tellunium<br>52 | [209] <b>Po</b> polonium 84 | ve been repo | | 2 | 14 <b>N</b> nitrogen 7 | 31<br>P<br>phosphorus<br>15 | 75<br><b>As</b><br>arsenic<br>33 | 122<br><b>Sb</b><br>antimony<br>51 | 209 <b>Bi</b> bismuth 83 | s 112-116 ha<br>authenticated | | 4 | 12<br><b>C</b><br>carbon<br>6 | 28<br><b>Si</b><br>silicon<br>14 | 73<br><b>Ge</b><br>gemanium<br>32 | 119<br><b>Sn</b><br>tin<br>50 | 207 <b>Pb</b> | mic numbers | | ဇ | 11<br>boron<br>5 | 27<br>AI<br>aluminium<br>13 | 70<br><b>Ga</b><br>gallium<br>31 | 115<br>In<br>indium<br>49 | 204<br>T<br>thallium<br>81 | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | , | | | 65<br><b>Zn</b><br>zinc<br>30 | 112<br><b>Cd</b><br>cadmium<br>48 | 201<br><b>Hg</b><br>mercury<br>80 | Elem | | | | | 63.5<br><b>Cu</b> copper 29 | 108<br><b>Ag</b><br>silver<br>47 | 197<br><b>Au</b><br>godd<br>79 | Rg<br>roentgenium | | | | | 59<br>nickel<br>28 | 106<br><b>Pd</b><br>palladium<br>46 | 195<br><b>Pt</b><br>platinum<br>78 | Ds<br>darmstadtium | | | | | 59<br><b>Co</b> cobalt 27 | 103<br><b>Rh</b><br>rhodium<br>45 | 192 <b> </b> | [268] <b>Mt</b> meitnerium 109 | | 1<br>hydrogen | | | 56<br>iron<br>26 | Ru<br>ruthenium<br>44 | 190<br><b>Os</b><br>osmium<br>76 | [277]<br><b>Hs</b><br>hassium<br>108 | | | | | 55<br>Mn<br>manganese<br>25 | [98] <b>Tc</b> technetium 43 | 186<br><b>Re</b><br>rhenium<br>75 | [264] <b>Bh</b> bohrium 107 | | | nass<br><b>ool</b><br>umber | | 52<br><b>Cr</b><br>chromium<br>24 | 96<br><b>Mo</b><br>molybdenum<br>42 | 184<br><b>W</b><br>tungsten<br>74 | Sg<br>seaborgium<br>106 | | Key | relative atomic mass<br>atomic symbol<br>name<br>atomic (proton) number | | 51<br><b>V</b><br>vanadium<br>23 | 93<br><b>Nb</b><br>niobium<br>41 | 181<br><b>Ta</b><br>tantalum<br>73 | [262] <b>Db</b> dubnium 105 | | | relativ<br><b>ato</b><br>atomic | | 48<br>T<br>titanium<br>22 | 91<br><b>Zr</b><br>zirconium<br>40 | 178<br><b>Hf</b><br>hafnium<br>72 | Rf rutherfordium 104 | | · | | | 45<br>Sc<br>scandium<br>21 | 89 <b>×</b> yttrium 39 | 139<br><b>La</b> *<br>lanthanum<br>57 | [227]<br><b>Ac*</b><br>actinium<br>89 | | 2 | 9<br><b>Be</b><br>beryllium<br>4 | 24<br><b>Mg</b><br>magnesium<br>12 | 40<br><b>Ca</b><br>caldum<br>20 | Sr<br>strontium<br>38 | 137<br><b>Ba</b><br>barium<br>56 | [226] <b>Ra</b> radium 88 | | <del>-</del> | 7<br><b>L.i</b><br>lithium<br>3 | 23<br><b>Na</b><br>sodium<br>11 | 39<br><b>K</b><br>potassium<br>19 | 85<br><b>Rb</b><br>rubidium<br>37 | 133<br><b>Cs</b><br>caesium<br>55 | [223] <b>Fr</b> francium 87 | \* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number. DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA # **BLANK PAGE** Questions begin on next page. DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA # **Answer ALL questions** Some questions must be answered with a cross in a box $\boxtimes$ . If you change your mind about an answer, put a line through the box $\boxtimes$ and then mark your new answer with a cross $\boxtimes$ . ### Water | 1 | | om reservoirs is treated a reason why water is to | | | (1) | |---|-----|----------------------------------------------------------------------------------|-------------------------|-----------------------------|-----| | | | | | | | | | You | er taken from reservoirs<br>are given samples of hai<br>Explain how you could sl | d water and soft water. | nard water and which sample | 2 | | | V | vas soft water. | | | | | | ι | Jse the words from the b | oox in your answer. | | | | | | lather | scum | soap | (2) | | | | | | | (3) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DO NOT WRITE IN THIS AREA | (ii) | ۱۸/۱ | | | |-------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----| | | V V I | nich of these ions causes hardness in water? | | | | Pu | t a cross (⊠) in the box next to your answer. | (1) | | × | Δ | potassium ions | (1) | | | В | magnesium ions | | | | | chloride ions | | | | | | | | | ט | hydroxide ions | | | (iii | ) Ha | rdness in water can be either temporary or permanent. | | | | | escribe a test to show whether the hardness in a sample of water is mporary or permanent. | | | | tei | inporary or permanent. | (2) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | c) Cc | mp | lete the sentence by putting a cross (⊠) in the box next to your answer. | | | c) Co | mp | lete the sentence by putting a cross (⊠) in the box next to your answer. | (1) | | 10 | 00 c | cm³ of a solution contained 1.0 g of dissolved solid. | (1) | | 10<br>Th | 00 d<br>e cd | | (1) | | 10<br>Th | 00 d<br>e cd | cm <sup>3</sup> of a solution contained 1.0 g of dissolved solid.<br>Oncentration of the solid in g dm <sup>-3</sup> is | (1) | | 10<br>Th<br>A<br>B | 00 d<br>e co<br>0 | cm <sup>3</sup> of a solution contained 1.0 g of dissolved solid. oncentration of the solid in g dm <sup>-3</sup> is .1 | (1) | | 10<br>Th<br>A<br>B<br>C | 00 c<br>e cc<br>0<br>1 | cm <sup>3</sup> of a solution contained 1.0 g of dissolved solid. oncentration of the solid in g dm <sup>-3</sup> is .1 .0 .0 | (1) | | 10<br>Th | 00 d<br>e co<br>0 | cm <sup>3</sup> of a solution contained 1.0 g of dissolved solid. oncentration of the solid in g dm <sup>-3</sup> is .1 .0 .0 | | DO NOT WRITE IN THIS AREA | | | Solutions and tests for ions | | |---|--------|-------------------------------------------------------------------------------------------------------------|-----| | 2 | | rescribe how you would make a solution of sodium chloride from odium chloride crystals and distilled water. | (2) | | | | | | | | | | | | | | | | | | /::\ A | | | | | . , | test for chloride ions is carried out on the sodium chloride solution. | | | | Ρ, | , Q, R and S are involved in tests for ions. | | | | | P add silver nitrate solution to the solution | | | | | <b>Q</b> a white precipitate forms | | | | | <b>R</b> add sodium hydroxide solution to the solution | | | | | <b>S</b> add dilute nitric acid to the solution | | | | 0 | only three of these form part of the test for chloride ions. | | | | Id | dentify the three and place them in the order they occur in the test. | | | | | | (2) | | | 1 | | | | | 2 | | | | | 3 | | | | | | | | | | | | | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA | (b) The test for ammonium ions is | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | <ul> <li>add sodium hydroxide solution to a solution of the salt</li> </ul> | | | <ul><li>warm the mixture</li><li>test the ammonia gas given off with damp red litmus paper.</li></ul> | | | (i) Choose the formula of sodium hydroxide. | | | Put a cross (⊠) in the box next to your answer. | (1) | | ☑ A KOH | (1) | | ■ B NaO | | | ☑ C NaOH | | | ■ SOH | | | (ii) Complete the sentence by putting a cross (⊠) in the box next to your ans | wer. | | When the ammonia gas is tested with damp red litmus paper, the litmus paper turns blue. | | | This shows that the ammonia gas is | | | ■ A acidic | | | ■ B alkaline | | | ■ C neutral | | | ■ D an indicator | | | (c) Two tests are carried out on a solid. | | | <ul> <li>In a flame test, a yellow flame is seen.</li> <li>When some dilute hydrochloric acid is added to the solid, a gas is evo<br/>The gas turns limewater milky.</li> </ul> | lved. | | Give the name of the solid. | (2) | | | | (Total for Question 2 = 8 marks) DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA ## **Electrolysis and metal ions** - **3** (a) Some metals are extracted by the electrolysis of a molten compound. - (i) Complete the sentences about the electrolysis of a molten compound using words from the box. decomposed electricity electrons ions molecules purified Each word may be used once, more than once or not at all. (2) The compound has to be molten so that the \_\_\_\_\_ can move. When a molten compound is electrolysed its elements are formed. During electrolysis the compound is \_\_\_\_\_. (ii) Which of the following statements about electrolysis is correct?Put a cross (⋈) in the box next to your answer. (1) - A an anion is positively charged - B an anode is negatively charged - C a cation is positively charged - D a cathode is positively charged 8 DO NOT WRITE IN THIS AREA | Use this information to comp<br>takes place when molten zin | olete the word equation for the reaction that chloride is electrolysed. | |---------------------------------------------------------------------------------|-------------------------------------------------------------------------| | <b>F</b> | (2) | | inc chloride → | + | | (ii) In this electrolysis, chloride i | ons lose electrons to form the pale green gas. | | State the type of reaction tha | at occurs when electrons are lost. (1) | | c) Copper chloride dissolves in wat | ter. | | Describe what you <b>see</b> when so containing copper ions, Cu <sup>2+</sup> . | dium hydroxide solution is added to a solution | | containing copper ions, cu . | (2) | | | | | | | | | | | | | | d) Sodium is manufactured by the | electrolysis of molten sodium chloride. | | Explain a large-scale use of sodi | , | | p.a a lange state ass of sound | (2) | | | | | | | | | | | | | | | (Total for Question 3 = 10 marks) | | | (15 tall 161 Question 6 16 marks) | | | | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA ## Nitrogen, hydrogen and ammonia - (a) In industry, ammonia gas, NH<sub>3</sub>, is manufactured from nitrogen gas, N<sub>2</sub> and hydrogen gas, H<sub>2</sub>. - (i) Give the name of the industrial process used to manufacture ammonia. (1) (ii) State the main source of the nitrogen and of the hydrogen used in this process. (2) source of hydrogen (iii) Write the balanced equation for the reaction between nitrogen and hydrogen to produce ammonia. (2) (iv) State why the following hazard symbol is seen on a bottle of concentrated ammonia solution. (1) DO NOT WRITE IN THIS AREA | Use the formula to describe the atoms combined in one molecule of ammor | nia. | |-------------------------------------------------------------------------|-----------| | | (2) | | | | | | | | | | | | | | | | | | | | (c) Explain why ammonium compounds are important in agriculture. | | | | (2) | | | | | | | | | | | | | | | | | | | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = | 10 marks) | | (Total for Question 4 = 1 | 10 marks) | | (Total for Question 4 = | 10 marks) | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA **BLANK PAGE** DO NOT WRITE IN THIS AREA | | | Ethanoic acid | | |---|---------|----------------------------------------------------------------------------------------------------------------------------------|-----| | 5 | (a) A f | ew drops of phenolphthalein indicator are added to dilute ethanoic acid. | | | | Ch | oose the colour of this mixture. | | | | Pu | t a cross (⊠) in the box next to your answer. | (4) | | | ΜΔ | colourless | (1) | | | ⊠ B | orange | | | | | pink | | | | | | | | | | yellow | | | | of | dium ethanoate can be made by reacting ethanoic acid solution with a solution the alkali sodium hydroxide. ater is also formed. | | | | (i) | Give the name of the type of reaction that occurs when ethanoic acid reacts | | | | | with sodium hydroxide. | (1) | | | | | | | | (ii) | Write the word equation for this reaction. | (2) | | | (c) Eth | nanoic acid is present in vinegar. | | | | | State why vinegar is sprinkled on some foods. | | | | | State willy villegal is sprinkled on some roods. | (1) | | | (ii) | State why other foods are stored in vinegar. | (1) | | | | | | | | | | | (6) \*(d) Magnesium ethanoate is a salt which is soluble in water. It can be made by reacting magnesium carbonate powder with dilute ethanoic acid. Magnesium carbonate is insoluble in water. The equation for the reaction is $$\begin{array}{l} \text{ethanoic} \\ \text{acid} \end{array} (\text{aq}) \, + \, \begin{array}{l} \text{magnesium} \\ \text{carbonate} \end{array} (\text{s}) \, \to \, \begin{array}{l} \text{magnesium} \\ \text{ethanoate} \end{array} (\text{aq}) \, + \, \begin{array}{l} \text{carbon} \\ \text{dioxide} \end{array} (\text{g}) \, + \, \text{water (I)} \end{array}$$ You are given some dilute ethanoic acid and magnesium carbonate powder. Describe how you would prepare a pure solution of magnesium ethanoate and how you would obtain pure, dry magnesium ethanoate crystals from that solution. | <br> | | | | | <br> | | <br> | | <br> | <br> | |------|-------|-------|-------|-------|-----------|-------|------|-------|-----------|------| | <br> | | | | | <br> | | <br> | | <br> | <br> | | <br> | | | | | <br> | | <br> | | <br> | <br> | | | | | | | | | | | | | | <br> | ••••• | ••••• | ••••• | ••••• | <br>••••• | ••••• | <br> | ••••• | <br>••••• | <br> | | <br> | | | | | <br> | | <br> | | <br> | <br> | | <br> | | | | | | | <br> | | <br> | <br> | DO NOT WRITE IN THIS AREA | (Total for Question 5 = 12 marks) | |-----------------------------------| | | DO NOT WRITE IN THIS AREA DO NOT WRITE IN THIS AREA # **BLANK PAGE** AREA THIS WRITEIN O NOT WRITE IN THIS AREA # **Organic compounds** - **6** (a) The formula of a molecule of ethanol is C<sub>2</sub>H<sub>2</sub>OH. - (i) State how you know, from its formula, that ethanol is **not** a hydrocarbon. (1) (ii) A dilute solution of ethanol can be produced by the fermentation of a carbohydrate. Starting from sugar (a carbohydrate), describe how a dilute solution of ethanol can be produced. (3) (iii) Complete the sentence by putting a cross ( $\boxtimes$ ) in the box next to your answer. (1) When ethanol reacts with ethanoic acid, ethyl ethanoate is formed. Ethyl ethanoate is - A an alkali - B an acid - C an ester - D an enzyme - (iv) When one molecule of ethanol reacts with one molecule of ethanoic acid, one molecule of ethyl ethanoate and one molecule of another substance are formed. Complete the equation. (1) $$C_2H_6O$$ + $C_2H_4O_2$ $\rightarrow$ $C_4H_8O_2$ + .....ethanol ethanoic acid ethyl ethanoate DO NOT WRITE IN THIS AREA | *(b) The alkanes and the alkenes are two examples of homologous series. | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----| | Name and draw the structures of some alkanes and of some alkenes and use<br>them to show how members of a homologous series are similar in their general<br>formula, names and structures of their molecules. | | | | (6) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | DO NOT WRITE IN THIS AREA | , | |-----------------------------------| | | | | | | | | | | | | | <br> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (Total for Question 6 = 12 marks) | | | | <b>TOTAL FOR PAPER = 60 MARKS</b> | | | DO NOT WRITE IN THIS AREA **BLANK PAGE**