

Please write clearly		
Centre Number	Candidate Number	
Surname		
Forname (s)		
Signature		

GCSE CHEMISTRY

Predicted Paper 2024

(based on AQA)

Higher Tier Paper 1

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table.

Instructions

- Use black ink or black ball-point pen.
- Pencils should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough workings in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Marke	er's Use
Question	Mark
1	
2	
3	
4	
5	
7	
8	
9	
TOTAL	

0 1	In 1911 Ernest Rutherford conducted an experiment in which alpha particles were fired at a thin sheet of gold foil. The experiment led to the plum pudding model of the atom being replaced by the nuclear model.
0 1.1	Describe the differences between the plum pudding model and the nuclear model of the atom.
	[3 marks]
0 1.2	Explain how the alpha particle scattering experiment led to the acceptance of the
	nuclear model of the atom. [2 marks]

	Gold is a transition metal. Other examples of transition metals are iron, nickel a cobalt.	and
0 1.3		[2 marks]
	Gold is sometimes used in the form of nanoparticles.	
1.4	Figure 1 shows us a nanoparticle. Each side of the cube has a length of 30 nm	
	Figure 1	
	30 nm 30 nm	
	Calculate the volume of the cube in Figure 1 .	
		[1 mark]
	Volume of the cube =	nm
0 1 . 5	Give an advantage of using nanoparticles compared with larger particle sizes.	[1 mark]

0 2	Phosphine is a highly toxic gas, which is found in the atmosphere of Jupiter. It has the molecular formula PH_3 .
0 2.1	Complete Figure 2 to show the outer electrons in a phosphine molecule. [2 marks]
	Figure 2
0 2 . 2	What is the type of bond in phosphine?
	Tick (✓) one box.
	Covalent [1 mark]
	Ionic
	Metallic
0 2.3	Draw a ring around the correct answer to complete the sentences.
	Phosphine is a [simple covalent giant covalent solid] molecule.
	Phosphine has a low boiling point because it has weak [electrostatic forces intermolecular forces covalent bonds].
	It takes [a lot a small amount no] energy to turn phosphine from a liquid into a gas.
	[3 marks]

There is some evidence suggesting that the planets Neptune and Uranus contain large amounts of diamond.

Figure 3.1 represents the structure of diamond. **Figure 3.2** represents the structure of graphite.

0	2	. 4	Explain why diamond is very hard, while graphite is very soft. Your answer should include a comparison of the structure and bonding in diamond with that of graphite. [6 marks]
			

0 3	Hydrochloric acid reacts with magnesium in an exothermic reaction.		
	The equation for the reaction is:		
	$2HCl(aq) \ + \ Mg(s) \ \to \ MgCl_2(aq) \ + \ H_2(g)$		
	A student investigated the effect of changing the concentration of hydrochloric acid on		
	the maximum temperature reached by the reaction mixture.		
0 3.1	Plan a method to investigate how changing the concentration of hydrochloric acid affects the highest temperature reached by the reaction mixture.		
	allects the highest temperature reached by the reaction mixture. [6 ma		
	·		

3 . 2	Give the name	hloride is a salt. e of another sub		ould form mag	nesium cl	nloride when
	reacted with h	nydrochloric acid				[1 mark]
	Magnesium cl	hloride is an ioni	c substance.			
3 . 3	Describe wha		a magnesium	atom reacts wit	th 2 chlori	ne atoms. Answer
	iii teiiiis tii ele	.				[4 marks]
3.4			emical equation	s to show the s	state of ea	ich substance in a
	reaction. Com	plete the table.				[1 mark]
			Table	1		[
	state		liquid	<u>'</u>		aqueous
	symbol	s		g		

0 4	Table 2 shows t	he properties of the s	ubatomic particles.	
0 4 . 1	Complete the ta	ble.		[3 marks]
		Ta	able 2	
		mass	charge	location
	proton			
	neutron			
		Very small		
0 4 . 2	periodic table by Complete the se	their atomic weights. entences below. ev designed his period	c particles, the elements lic table he placed elements	ents with similar
				[2 marks]

0 4. 3 Complete Fig	ure 4 to show the electronic structure of a fluoride ion (F ⁻).	[2 marks]
	Figure 4	
0 4. Copper has to	wo stable isotopes.	
⁶³ Cu has a re	lative abundance of 69.15 %	
⁶⁵ Cu has a re	lative abundance of 30.85 %	
Calculate the	relative atomic mass of copper.	
Give your ans	swer to 1 decimal place.	[2 marks]
	Turn over to the next question	

0 5	A student is investigating the reaction between sulfuric acid and sodium hydroxide.
	The equation for this reaction is shown below.
	$2NaOH(aq) + H2SO4(aq) \rightarrow Na2SO4(aq) + 2H2O(I)$
	15.0 cm³ of sulfuric acid reacts with 20.0 cm³ of 0.250 mol/dm³ sodium hydroxide.
0 5 . 1	Find the concentration of the acid in mol/dm ³ .
	Give your answer to 3 significant figures. [6 marks]
	[e mane]
	Concentration of acid = mol/dm ³
0 5.2	What is an acid?
	Tick (✓) the correct box. [1 mark]
	A substance which releases H+ ions.
	A substance which removes H+ ions.
	A substance with no H+ ions.

0 5.3	Sulfuric acid is a strong acid, ethanoic acid is a weak acid.
	Explain how a strong acid is different from a weak acid. [2 marks]
	Sodium sulfate is used in the paper making industry.
	One method of making sodium sulfate is shown below.
	$2~\text{NaHCO}_3(\text{aq}) + \text{MgSO}_4(\text{aq}) \rightarrow \text{Na}_2\text{SO}_4(\text{aq}) + \text{MgCO}_3(\text{s}) + \text{CO}_2(\text{g}) + \text{H}_2\text{O}(\text{I})$
0 5.4	Calculate the percentage atom economy for the method of producing sodium sulfate.
	Give your answer to 3 significant figures.
	Relative atomic masses (Ar): H = 1 O = 16 Na = 23 Mg = 24 S = 32 [4 marks]
	Percentage atom economy (3 significant figures) =%
	Question 5 continues on the next page

	A shamist wants to make 20 a addium sulfate	
	A chemist wants to make 30 g sodium sulfate.	
0 5 . 5	Calculate how much magnesium carbonate will be produced. Give	
	your answer to 1 decimal place.	
	[3 marks]	
		$ \Gamma $
	g	
		1

0 6	Hydrogen fuel cells are sometimes used to generate electricity for cars.	
0 6.1	Give the half equations for the electrode reactions in a hydrogen fuel cell.	[4 marks]
0 6 . 2	Give an advantage and a disadvantage of using hydrogen fuel cells to power car.	
0 6 . 2		an electric [2 marks]
0 6 . 2		
0 6 . 2		
0 6 . 2		
0 6 . 2		
0 6 . 2		
0 6 . 2		

0 6.3	Draw a diagram of the cell.	
	Label the electrolyte and the 2 metal electrodes. [2 i	marks]
	Ethanol is a fuel sometimes used in vehicles. The reaction for the combustion of ethanol is shown below, this is an exothermic reaction. ethanol + oxygen → carbon dioxide + water	
	Draw the energy change diagram for the reaction between methanol and oxygen. Label the activation energy.	marks]

0 6 . 5 The balanced symbol equation for the reaction between methanol and oxygen is shown below:

$$\mathsf{CH_3OH} \ + \ \mathsf{2O_2} \ \to \ \mathsf{CO_2} \ + \ \mathsf{2H_2O}$$

Use the data in **Table 3** to calculate the overall energy change of the reaction.

[3 marks]

Table 3

Bond	Bond energy in KJ
C-H	435
C-O	336
O-H	464
O=O	498
C=O	830

13

Turn over to the next question

0 7	A student is given three different metals, Cu, Zn and Fe.	
	She is also given sulfate solutions of those metals; CuSO ₄ , ZnSO ₄ and FeSO ₄ .	
7.1	Describe a method the student could use to determine the order of reactivity of t metals.	hese
	[4	marks]
	Carbon can be used to extract copper from copper oxide.	
7.2	Balance the equation below:	1 mauki
	CuO + C \rightarrow Cu + CO ₂	1 mark]
0 7.3	Explain why copper is reduced. Answer in terms of electrons.	1 mark]
	•	

	17	
0 8	This question is about electrolysis of aqueous solutions.	
	A student investigates the electrolysis of different solutions using graphite electrons	odes.
	Figure 5 shows a simplified version of the electrolysis cell used.	
	Figure 5	
0 8.1	Graphite electrodes Salt solution Explain why the salt solution is able to conduct electricity.	marks]
0 8 . 2	An aqueous solution of copper sulfate is electrolysed. Give the products at the	
<u> </u>	electrodes.	marks]
	Positive electrode	
	Negative electrode	

Question 8 continues on the next page

An aqueous solution of potassium chloride is electrolysed. Give the products a	it the
	[2 marks]
Positive electrode	
Negative electrode	
Figure 6 shows aluminium being extracted from aluminium oxide, ${\rm Al}_2{\rm O}_3$ using electrolysis.	
Figure 6	
Molten aluminium oxide (Al ₂ O ₃) Electrolysis cell at 950 °C Aluminium ions Negative carbon electrode Aluminium liquid Explain why the carbon electrodes need to be continually replaced? Include a balanced symbol equation in your answer.	[3 marks]
	Positive electrode Negative electrode Figure 6 shows aluminium being extracted from aluminium oxide, Al ₂ O ₃ using electrolysis. Figure 6 Molten aluminium oxide (Al ₂ O ₃) Electrolysis cell at 950 °C Ala Oxide ions Explain why the carbon electrodes need to be continually replaced? Include a balanced symbol equation in your answer.

<u> </u>	e the half e	equation 10	i tile reduc	uon of alum	iifiium ions	•	[2	marks <u>;</u>
								<u> </u>

0 9	Hydrazine is a flammable liquid used as a propellant in rocket fuel. It has the molecular formula N_2H_4 . An equation for the synthesis of hydrazine is shown below.
	$NH_2CI + NH_3 \rightarrow N_2H_4 + HCI$
0 9.1	A chemist adds 100 g NH ₃ to 400 g NH ₂ Cl.
	Show that NH ₃ is the limiting reactant. [4 marks]

	The chemist isolates 26 g of hydrazine.
0 9 . 2	Calculate the percentage yield for this reaction. [3 marks]
	Percentage yield =%
	Hydrazine is passed over a catalyst to release hydrogen gas in the following equation:
	$N_2H_4(I) \rightarrow N_2(g) + 2H_2(g)$
	The chemist puts 20 g of hydrazine onto the catalyst, it completely reacts.
0 9 . 3	Calculate the total volume of gas produced at room temperature and pressure. [5 marks]
	Volume of gas =

END OF QUESTIONS