Edexcel IGCSE Chemistry

Topic 2: Inorganic chemistry
 Acids, alkalis and titrations

Notes

2.28 describe the use of litmus, phenolphthalein and methyl orange to distinguish between acidic and alkaline solutions

- Phenolphthalein
- Alkaline = pink
o Acidic = colourless
- Methyl orange
o Alkaline = yellow
- Acidic = red
- Litmus
o Litmus solution
- Alkaline = blue
- Acidic = red
o Litmus paper
- Blue litmus paper goes red in acidic \& stays blue in alkaline
- Red litmus paper goes blue in alkaline \& stays red in acidic
2.29 understand how to use the pH scale, from 0-14, can be used to classify solutions as strongly acidic (0-3), weakly acidic (4-6), neutral (7), weakly alkaline (8-10) and strongly alkaline (11-14)
- The pH scale (0 to 14) measures the acidity or alkalinity of a solution, and can be measured using universal indicator of a pH probe
o pH 7 is neutral
$0 \quad<\mathrm{pH} 7$ is acidic (the closer to 0 , the stronger the acid)
$0 \quad>\mathrm{pH} 7$ is alkaline (the closer to 14 , the stronger the alkali)

Neutral
2.30 describe the use of universal indicator to measure the approximate pH value of an aqueous solution

- add a couple of drops of solution to a piece of universal indicator paper and observe what colour it goes (compare to pH scale)
2.31 know that acids in aqueous solution are a source of hydrogen ions and alkalis in an aqueous solution are a source of hydroxide ions
- Acids produce H^{+}ions in aqueous solutions
- Alkalis produce OH^{-}ions in aqueous solutions

2.32 know that alkalis can neutralise acids

- A neutralisation reaction is one between an acid and a base
- the ionic equation for any alkali-acid neutralisation reaction is:
$\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$-> $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2.33 (chemistry only) describe how to carry out an acid-alkali titration

How to carry out a titration:

1. Wash burette using acid and then water
2. Fill burette to $100 \mathrm{~cm}^{3}$ with acid with the meniscus' base on the $100 \mathrm{~cm}^{3}$ line
3. Use $25 \mathrm{~cm}^{3}$ pipette to add $25 \mathrm{~cm}^{3}$ of alkali into a conical flask, drawing alkali into the pipette using a pipette filler
4. Add a few drops of a suitable indicator to the conical flask (eg: phenolphthalein which is pink when alkaline and colourless when acidic)
5. Add acid from burette to alkali until end-point is reached (as shown by indicator)
6. The titre (volume of acid needed to exactly neutralise the acid) is the difference between the first $\left(100 \mathrm{~cm}^{3}\right)$ and second readings on the burette)
7. Repeat the experiment until you get concordant results
